

METHANOL AS A VESSEL FUEL

CHRIS CHATTERTON COO

9TH BIENNIAL BUNKERING IN ASIA SEPTEMBER 3 – 4, 2019 ONE FARRER HOTEL, SINGAPORE

SIMPLEST MOLECULE OF ALCOHOLS GROUP

METHANOL

An essential ingredient of modern life

Energy/Fuel Substitution markets - represent the fastest growing demand segment for methanol (~45% demand) Chemical markets essential ingredient used in countless industrial ------and consumer products (~55% demand)

GLOBAL METHANOL PRODUCTION VS CAPACITY

- Rest of world methanol production (excluding China) operates to best of abilities. Excess production from the rest of the world is exported to China
- China "generally" represents the high-cost methanol production bloc in the world and operates to meet China demand, less imports received from the rest of the world
- Industrial scale since 1923 (BASF)
 Source: Argus

GLOBAL METHANOL DEMAND BY COUNTRY/REGION

- China dominates global methanol industry demand – 54% in 2018
- W Europe and N America compete for the 2nd and 3rd spots – top three accounting for 75% of total
- Concentrated consumer base, ~30% of demand from top 25 consumers
 - Main consumers are large, global chemical companies and China MTO producers: BASF, Momentive, Celanese, BP, Dow/Dow Corning, Lucite, Evonik, LyondellBasell, SABIC, Sinopec, Ningbo Fund, Jiangsu Sailboat, etc
- Industry growth expected at 4.5% per year. The equivalent of 2 world scale methanol units

Source: Argus

METHANOL INDUSTRY PRODUCTION CASH COST CURVES

- Methanol industry cash cost curves well compressed
 - Cash cost only, no depreciation, capital recovery or return
 - o fob plant gate basis
 - Shipping to destinations can add \$20-\$60/t, depending on origin and destination
- A slowly rising crude oil forecast drives little change in feedstock costs
 - Industry incremental cash cost of production remains in a narrow band
 - Little opportunity to "driveup" the floor price of the high cost producer increment
- The methanol industry continues to see robust growth
 - \circ ~4-5% into the next decade
 - China continues to dominate industry demand and production
 - Nominal 2-3 "world scale" methanol units needed per year to keep pace with demand growth

Source: Argus

BROAD FEEDSTOCK RANGE, MANY APPLICATIONS

E-METHANOL: AN EFFICIENT ENERGY CARRIER

BROADLY, METHANOL IS...

τμανοι

гітите

- A cost effective and "future proof" fuel which can be produced from a variety of feedstocks – to include renewables
- One of the top 5 seaborne chemical commodities safely handled for over 50 years
- A lower cost alternative for converting vessels, boilers and other power sources to methanol – minimal and economically viable without subsidies
- Widely available and alleviates many infrastructure and safety limitations both on land and at sea, trading within a narrower price range than competing fuels
- Not as well understood as a fuel, even though it has similar handling characteristics as distillate fuel

HAZARD COMPARISON

	METHANOL	DIESEL	GASOLINE	
Hazard pictograms (CPL)				
Signal word: (CPL)	Danger	Danger	Danger	
Hazard statements (CPL)	HOZD Hegdy Extratolike lopad and vapour. 1000 Trato: Erweikwerd. 2021 Trato: constant with Jahr. HOZI Trato: constant with Jahr. HOZI Trato: # inhaled. HOZD Causes diarrage to organis.	HO20: Henruhlie lopad and septer. 10396 Med je feld if sveldened end enters drivers. 10296 Anal je feld if sveldened end enters drivers. 1022: Osana ibi initiation. 1023: Henruhi if ishaled 1023: Men consideration of constru- 1023: Men consideration construction anoisered or researched espensive, 1023: Men consideration construction anoisered or researched espensive, 1023: Men consideration construction anoisered or researched espensive, 1023: Men consideration anoisered or researched espensive, 1023: Men construction anoiser to construct on the second espensive.	H22E: Internendy Tammakia Ingand and Angener. 1930: May be Edul IF and Enderson I and enters of Hanson H22E: Course of the Institution H24E: May cause provide defects. 1930: Somethic of downshing ceff By on the universe child 1930: Somethic of downshing ceff angenes. 1931: Tomic to excusts, life with lowal esting effects.	
Precautionary statements (CLP)	FIG3: Sees area how how: 's evaluation (FIG3: Use producting your, producting your protection, free production: OREGARDS - EXAMPLED researching to the how are used as a production and evaluation of the starting OREGARDS - EXAMPLED researching and a EVACUAE CREAT an evaluation OREGARDS - EXAMPLED researching and a EVACUAE CREAT an evaluation OREGARDS - EXAMPLED researching and a EVACUAE CREAT an evaluation OREGARDS - EXAMPLED researching and a EVACUAE CREAT an evaluation OREGARDS - EXAMPLED researching and a EVACUAE CREAT an evaluation OREGARDS - EXAMPLED researching and a EVACUAE CREAT an evaluation OREGARDS - EXAMPLED researching and a EVACUAE CREAT an evaluation OREGARDS - EXAMPLED researching and a EVACUAE CREAT an evaluation OREGARDS - EXAMPLED researching and a EVACUAE CREAT an evaluation OREGARDS - EXAMPLED - EXAMPL	PDE: Clock special individual individual individual programme PDE: Alter programme providual individual programme PDE: Alter programme programme individual individual programme PDE: Discond inditere PDE: Discond individual prog	1920 - California endo index services and a second of a second and a s	

Methanol classified as "not more dangerous" than other fuels such as gasoline or diesel – fuels largely familiar to most people

METHANOL POISONING CASE STUDY

Occupational Medicine, Volume 42, Issue 1, 1 January 1992, Pages 47–49, https://doi.org/10.1093/occmed/42.1.47A. Downie ➡, T. M. Khattab, M. I. A. Malik, I. N. SamaraPublished: 01 January 1992

Abstract

Methanol (CH 3 OH) is a chemical feedstock of increasing importance as well as a commonly used solvent. In the early 1980s methanol production was introduced at a new petrochemical complex in the Saudi port of Jubail. A case is presented of a consultant <u>supervising tank cleaning</u> prior to methanol loading. He wore positive pressure breathing apparatus but no protective clothing. <u>After 2–3 hours working in the confined space of the tank, he</u> worked on deck and continued to wear his <u>methanol-soaked clothing</u> which eventually dried out. Visual symptoms of acute methanol toxicity presented some 8 hours after exposure. <u>The appropriate treatment (with ethanol</u> provided by the ship bond) was carried out in hospital and the individual recovered completely. Most reported cases of methanol toxicity are social in origin, arising from ingestion. This particular case, though unusual, does present some interesting lessons. Easy and reliable treatment to full recovery with either ethanol (orally) or fomepizole (injected)

Source: Malcom Pirnie Inc

SAFER FOR THE ENVIRONMENT

METHANOL IS WIDELY AVAILABLE

METHANOL AVAILABLE IN OVER 100 PORTS TODAY

https://public.tableau.com/profile/quantzig#!/vizhome/MethanolAvailabilityDataTopGlobalMaritimePorts/MethanolFuelAvailabilityatPorts

METHANOL: A HYDROGEN CARRIER FOR FUEL CELLS

- Blue World Technologies (Denmark)
- Palcan (China)
- Horizon Energy Systems (Singapore)
- Oneberry (Singapore)
- Altergy (USA)
- Serenegy (Denmark)
- SFC Energy (Germany)
- Toshiba (Japan)
- Ultracell (USA)
- e1 (USA)

COST OF H₂ COMING DOWN BUT INFRA COSTS STILL HIGH

00

Financing (FCEV+infrastructure)

Adapted from "Development of business cases for Fuel Cell and Hydrogen applications for Regions and Cities", 2017, Roland Berger for the FCH-JU

FCEV BEV Diesel FCEV BEV Diesel

CHINA FUEL CELL PIVOT

- March 2018: MIIT releases plans for hydrogen fuel cell promotion as "new energy vehicles"
- China now has just 1,500 FCVs and 23 hydrogen fuelling stations
- Targets: 2020 5,000 FCVs; 2025 50,000 FCVs; 2030 1 millon FCVs
- Pivot away from EV subsidies and moving support to hydrogen fuel cells
- Emphasis on commercial vehicles: buses & trucks, long-haul

HYBRID INNOVATION: AIWAYS/GUMPERT RG 'NATALIE'

- o AlWays: Gumpert RG Nathalie
- Reformed Methanol Fuel Cell electric supercar
- o 1,200 km range
- top speed 300 kph

METHANOL ENERGY DENSITY

- High density H₂ storage remains a significant challenge for transportation solutions
- Storage options typically require large-volume systems that store H₂ in gaseous form
- On a volume basis, methanol has almost 6X the energy density of compressed H₂ (350 bar or 35 Mpa)

Source: MI, e1

Volumetric Energy Density

ON-BOARD H₂ GENERATION FOR MARINE VESSELS

 Storing compressed H₂ onboard a vessel requires 15X more space than liquid methanol paired with a hydrogen generator

1 MW for 1 day					
Compressed Hydrogen	309 m ³				
Liquid Methanol + M-Series	20 m ³				
1 MW for 10 days					
Compressed Hydrogen	3,090 m ³				
Liquid Methanol + M-Series	200 m ³				

- Mature technology: 20 years, multiple lines
- Scaleable: to 300kW
- >99.97% purity: <0.2ppm CO & CO₂

Source: e1

PROGRESSION OF GUIDELINES FOR METHANOL

	DUAL FUEL			FUEL CELL		PROJECT R&D	
Quantity	7 +4	1	1	2	1	+4	
Vessel Type	Chemical tankers	ROPAX ferry	Pilot boat	Tourist boat	Ferry	Cruise ships, fishing boats, barges, dredges, others	
Owner	MOL, WL, Marinvest, Mitsui, NYK	Stena Line	MI/SMA ScandiNaos	Innogy HTWG Konstanz	Viking Line	SUMMETH/MARTEC, Lean Ships, Methaship, Billion Miles ¹ , FiTech ² , IWAI ³ , PCG Product Vessel ⁴ , NTU ² , GMM, Fastwater, Port of Rotterdam Barge, Jupiter, Paxell, Methanex Fishing ⁵	
Engine Type	2 stroke MAN	4 stroke Wärtsila	high speed Scania, Weichai	Serenergy fuel cell stacks		SI hybrid, dual fuel, etc.	
Design	new build	retrofit	retrofit	retrofit	retrofit	new build & retrofit	

All projects are based in the EU unless noted otherwise¹China/SG, ²EU/China/SG, ³India, ⁴Malaysia, ⁵China

METHANOL FUEL CHARACTERISTICS

Parameters		Petrol C ₅ -C ₁₂ Hydrocarbon	Diesel C ₁₀ -C ₂₁ Hydrocarbon	Natural Gas CH₄	Methanol CH ₃ OH	Ethanol C₂H₅OH
	С	85	86	75	37.5	52.2
Mass Fraction	Н	15	14	25	12.5	13.0
	0	0	0	0	50	34.8
Density (liquid)(kg/L)		0.72-0.78	0.82-0.86	0.42-0.46	0.79	0.81
Boiling point (°C)		30-190	180-360	-162	65	78
Flash point (⁰ C)		-50 ~-20	>55	-188	11	9
Auto-ignition point (⁰ C)		420	250	650	465	426
Lower heating value (MJ/kg)		44.0	42.5	50	19.5	25
Octane number		70-97	20-30	130	111	108
Cetane number		-15	40-55	Low	3-5	8
Flammability limits (%)		1.1-5.9	1.58-8.2	5-15	6-36.5	4-19
Vapour pressure at 37ºC/kPa		55-103	<1.37		31.6	15.8

METHANOL

BUNKERING TECHNICAL CONSIDERATIONS

- Refueling station
- Refueling station should be located on open deck for natural ventilation
- There should be a device for safe disposal of leaked fuel, and skirting and collection tray below the joint for safe collection
- Monitor and control the refueling from a safe location (equipped with overfill alarm and automatic cutoff to monitor bunker level and overfill)
- Personnel protection (shower and eyewash station for emergency use must be available)

Stena Germanica Methanol Refueling

BUNKERING TECHNICAL CONSIDERATIONS

- Refueling system
- Every refueling line near the shore connector should be fitted with a manual shutoff valve and a remote shutoff valve connected in series
- $\circ~$ Should be able to perform gas inerting and degassing of the refueling line
- o Should be equipped to purge the fuel from the refueling line after refueling
- The ship should be equipped with refueling ESD cut-off system, which can be operated from the ship to be refueled or from the place performing the refueling

FUEL STORAGE

Proportion of gaseous methanol depends on the rate of evaporation

SUMMARY

- Physical characteristics of methanol are highly competitive or surpass other alternative fuels, across a range of applications
- Application design, whether retrofit or new build are simple, advantageous, practical and understandable – whether for ships, boilers, kilns, or cars
- Compelling emissions reduction properties in all cases
- Superior Life Cycle Analysis (LCA) advantage when combined with CCI technology or when renewably produced
- Infrastructure is a key enabler for methanol's uptake as a fuel due to storage and handling being no more complicated than other liquid fuels
- More visibility over long-term pricing than competitive fuels

THANK YOU

SINGAPORE (HQ)

WASHINGTON D.C.

BRUSSELS

10 Anson Road #32-10 International Plaza Singapore 079903 + 65 6325 6300 225 Reinekers Lane Suite 205 Alexandria, VA22314 +1 (703) 248-3636 Square de Meeûs 38/40 B-1000 Brussels Belgium +32 2 401 61 51

BEIJING

#511, Pacific Sci-tech Development Center Peking University No. 52 Hai Dian Rd. Beijing 100871, China +86 10 6275 5984

