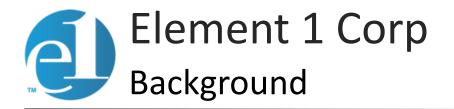


Element 1 Corp (e1) Methanol to H₂ Supply Systems (MHSS) - Fuel Cell Mobility -

Robert Schluter, President CaFCP Working Group Meeting 31 July 2019

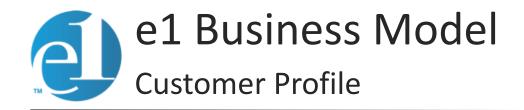
Scalable. Reliable. Affordable.

www.e1na.com


- → e1 is a developer of Methanol to H₂ Supply System (MHSS) products and technology
- → CaFCP's Stated Goals:
 - Replace gasoline and diesel with clean H₂
 - Accelerate market adoption of consumer FCEV
 - Realistic H₂ solution for HD FCEV
 - Have California lead the way to volume commercialization of fuel cell transportation, enabling market adoption of fuel cell solutions globally

e1's MHSS Technology Accelerates the Adoption of Fuel Cell Solutions Globally

Confidential

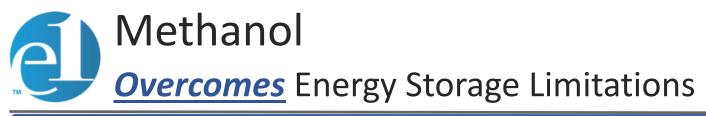

Scalable, Reliable, and Affordable H₂ Generation

- → e1 is a leading developer of small-scale advanced methanol to H₂ supply systems supporting the fuel cell industry
- → e1 collaborates with its strategic licensing partners to produce state-of-the-art H₂ generation systems used in clean energy solutions
- → e1 technology is licensed to partners to address a wide range of products, markets, and applications
- → e1 offers solutions for:
 - On-site H₂ generation (fuel cell power, H₂ refueling stations)
 - Mobile (on-board) H₂ generation (fuel cell electric HD trucks, trains, and marine vessels)

Element 1 Corp Introduction Video (Hyperlink)

Founded in 2010 in Bend, Oregon

- → Develop H₂ technology
- → Assemble and provide sample (demonstration) products for evaluation by partner companies
- → Licensing business model to get product to market worldwide (not a commercial manufacturer of H₂ generators)
- → License partners manufacture e1 H₂ generator products and provide the sales channel to defined markets
- → e1's Customer Profile:
 - $_{\odot}\,$ Fuel cell technology developers
 - $_{\odot}\,$ Fuel cell system integrators
 - Market leading OEM's who want to acquire fuel cell related technology to maintain or grow market share


e1 H₂ Generators have been integrated with PEMFC's by: HYDROG(E)NICS SHIFT POWER | ENERGIZE YOUR WORLD Intelligent Energy foolus Energy Corporati Fuel Cell Revolution

Solving "The H₂ Challenge" The Case for <u>Methanol to H₂ Supply Systems</u> (MHSS)

- → Fuel cell solutions are being commercialized in the transportation industry
- → Fuel cell systems require new H₂ solutions to "<u>Crack</u> the H₂ Challenge"
- → Lowering H₂'s total cost per kilogram at the point of use is key to <u>driving</u> adoption of fuel cell power solutions
 - Compressed H₂ is >\$8 kg, and can approach \$16 kg in key markets slowing adoption of fuel cell vehicles
- → Compressed H₂ occupies too much volume to be practical for HD transportation (Trucks, Trains, and Marine Vessels)
 - Limited space is available for H₂ storage which *reduces range*

e1's H₂ supply technology <u>Solves</u> "The H₂ Challenge"

A high-volume commodity liquid hydrocarbon fuel (methanol) allows for:

- → <u>*High-energy*</u> fuel density
- → *Low-cost* of fuel (with the right technology)
- → *Low-cost* of liquid fuel storage
- → <u>Low-carbon</u> fuel, with a <u>renewable future</u> Just like H₂ and RNG
- → <u>Reduces</u> Safety Risk <u>No</u> onboard HP H₂ storage required
- → Fueling stations wherever *fueling exists today*

Requires e1 MHSS technology to unlock the H₂ in methanol

Distributed H₂ Generation Solutions

Three H₂ Generator Options

Definition: A completely self-contained machine that converts feedstock to purified H₂

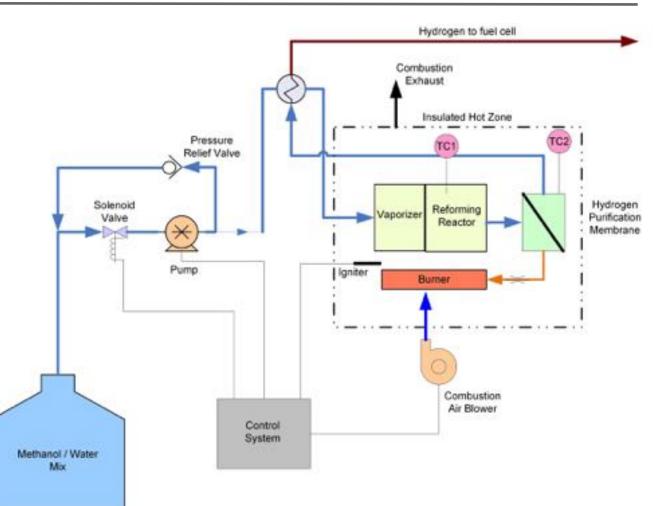
- \rightarrow Electrolyzer (water split by electricity into H₂ and oxygen)
 - Requires MW scale power that may not be available
 - High CapEx and OpEx, limiting deployment
- → Natural gas reformer (methane plus water reacted to make H₂)
 - Requires NG pipeline infrastructure, eliminating remote and mobile solutions
 - <u>High CapEx.</u> High temperature reforming requires special allows, expensive NG conditioning and compression, complex controls, PSA. <u>All limiting deployment</u>
- → Methanol Reformer (methanol plus water reacted to make H₂) (<u>MHSS</u>)
 - Lowest CapEx due to low temperature reforming, e1 purifier
 - *Lowest TCO*, MHSS cost of produced H₂ about US\$3 to US\$4/kg
 - **No Supporting** infrastructure required for **Onboard the vehicle MHSS**

e1's MHSS products have the <u>lowest</u> CapEx, and produces the <u>lowest</u> total cost of H₂

e1 H₂ Generator (MHSS) Products

Common Attributes of e1's MHSS technology

- → e1 offers three MHSS product lines that operate on a methanol-water mix
- → e1 models provide H₂ production flow rates from 2 kg/d to 500 kg/d, all producing fuel cell grade H₂
- → e1 H₂ generators are modular and highly scalable while maintaining their breakthrough economics
- → Common attributes: Very Low CapEx, Very Low OpEx, Lowest TCO H₂ kg/d, Compact Design, Low Noise, Low Maintenance, and No SO_x, No SO_x, or PM


e1 MHSS products have been integrated with PEMFC's by:

e1 MHSS Same Fundamental Design; Small to Large

Key Features

- → Two input streams (methanol/water mix and combustion air)
- → Two output streams (product H₂ and combustion exhaust)
- → Thermally integrated (only one control point required)
- → Redundant ignition sources
- → Starts producing H₂ within seconds (from hot standby)
- → Simple, inexpensive to manufacture
- → Compact, simple to operate and control

e1 H₂ Membrane Purifier Patented Proprietary H₂ Purification

Overview

- → e1's membrane purifier was designed to displace expensive micro-PSA H₂ purifiers
- → **Operation:** Passive process works by pressure differential
- → Product H₂: >99.97% (typically 99.99%) with <0.2 ppm CO and <0.2 ppm CO₂
- → **Target uses:** H₂ generators, industrial H₂ applications, chemical processes

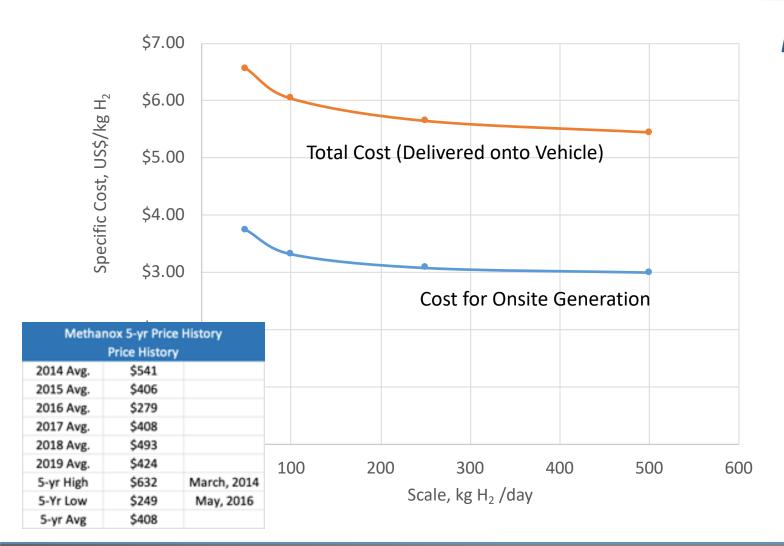
Key Advantages


- → High Quality: Produces fuel-cell-grade H₂
- → Lowest initial cost of equipment
- → Quiet and simple operation: No moving parts
- → Scalable: 5 purifiers in an M40, 10 purifiers in M80
- → **High reliability and long lifetime:** engineered for > 20,000 hours operation
- → Easy integration: no valves, absorbents, or complicated controls

Developed over 30 years, e1's membrane purifier is the <u>Key</u> to low cost H₂ purification

Purification module array

Section Break

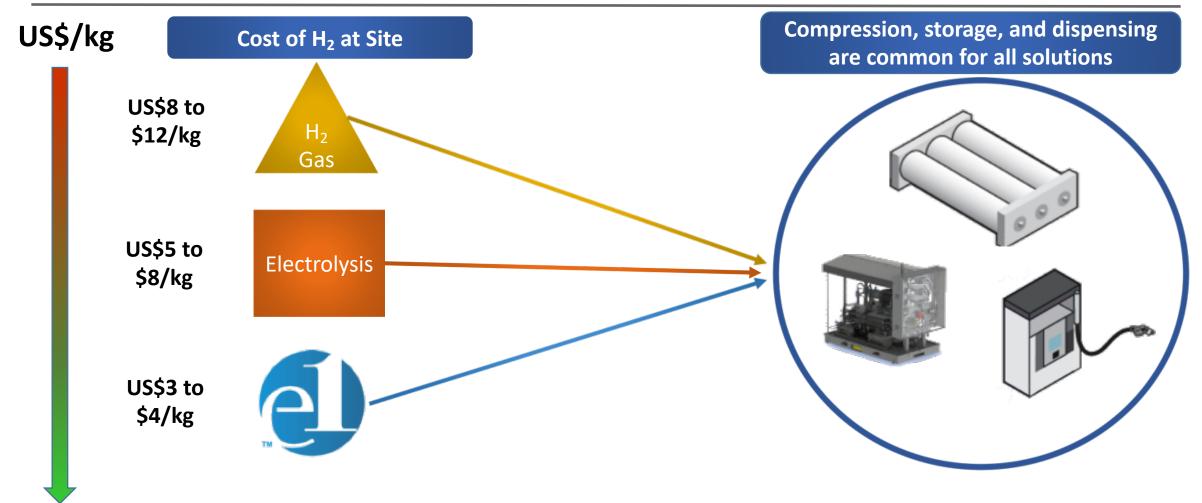

Designed to displace compressed or liquid H₂ to support H₂ fueling and stationary power

- \rightarrow H₂ Production: Can scale to produce 50 kg/d to 500 kg/d
- → Woodward Controls: World-class controls for reliable operation
- → **Power Required:** \leq 6 kW per 500 kg/d of H₂ produced
- → Feedstock: Methanol and DI water
 - $_{\odot}$ 6.3 kg methanol/water mix water yields 1.0 kg pure H₂
- → Displaces expensive H_2 produced offsite
- → Competing electrolyzer solutions are expensive and have large electricity requirements that may not be available
- → L-Series H₂ generator targets HRS and large stationary fuel cell power solutions

The L-Series MHSS Provides the Lowest Total Cost of H₂ for HRS

Total Cost of H₂, US\$/kg An Affordable Solution for Onsite H₂ Fueling

L-Series H₂ Generator

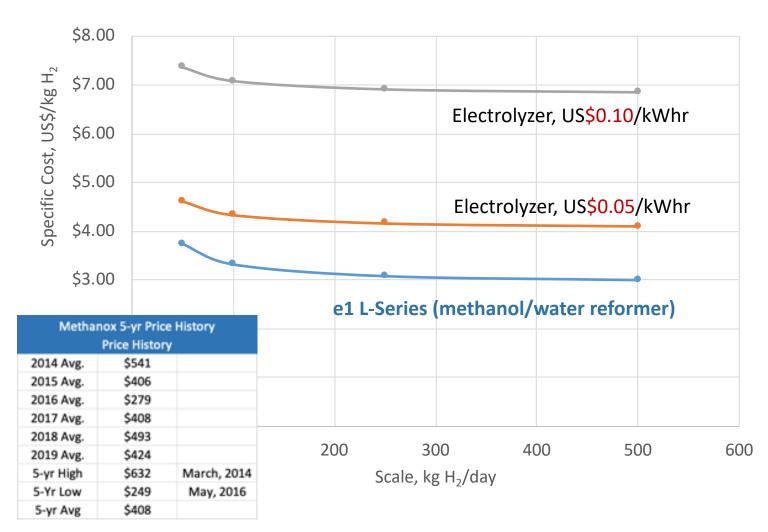

- → Total cost for H₂ delivered onto vehicle includes:
 - L-Series H₂ Generator costs (below), <u>plus</u>
 - Amortization of CapEx for H₂ compressor
 - Amortization of CapEx for H₂ storage and dispensing
 - Electricity for compression
 - Maintenance

→ Cost for onsite generation includes:

- Amortization of CapEx for the L-Series H₂ Generator (5-year depreciation)
- Cost of methanol feedstock (Methanex 5-yr Avg. US\$408/ton)
- Maintenance

L-Series Provides Significant Cost Reduction

40%+ Reduction on the Cost of H₂


e1 L-Series

- → Pure H₂ produced from methanol & water
 - 6.3 kg methanol yields 1.0 kg pure H₂
 - At US\$408/ton methanol → 6.3 kg methanol costs US\$2.57
 - Minimal maintenance cost
- → CapEx is less than 35% to 50% that of electrolyzers
 - In commercialization, CapEx is estimated to be:
 - $\odot~$ \$100,000 to \$150,000 for 100 kg H_2/day
 - \odot \$250,000 to \$300,000 for 300 kg H₂/day
- → If renewable methanol is used, zero net CO₂ emissions

Electrolyzer

- → Pure H₂ produced from electricity & water
 - 55 kWhr electricity yields 1.0 kg pure H₂
 - At US0.10/kWhr \rightarrow 55 kWhr costs US5.50
 - At US0.05/kWhr \rightarrow 55 kWhr costs US2.75
 - Significant maintenance cost to deliver high-purity water to the electrolyzer
- → High CapEx
 - Approx. \$560,000 to \$750,000 for 100 kg H₂/day
 - Approx. \$950,000 to \$1,400,000 for 300 kg H₂/day
- → If renewable electricity is used, zero net CO₂ emissions

L-Series compared to Water Electrolyzer

Cost of making H₂ onsite

(excludes cost of compression, highpressure storage, and dispensing)

→ L-Series H₂ Generator costs include:

- Amortization of CapEx for the L-Series H₂ generator (5-year depreciation)
- Cost of methanol feedstock (US\$408/ton)
- Maintenance

→ Water Electrolyzer costs include:

- Amortization of CapEx for the water electrolyzer (5-year depreciation)
- Cost of electricity (see graph)
- <u>No cost included</u> for maintenance and for water purification

www.e1na.com

Section Break

M-Series MHSS Onboard Mobile Solution for HD Vehicles, Rail, Marine Vessels

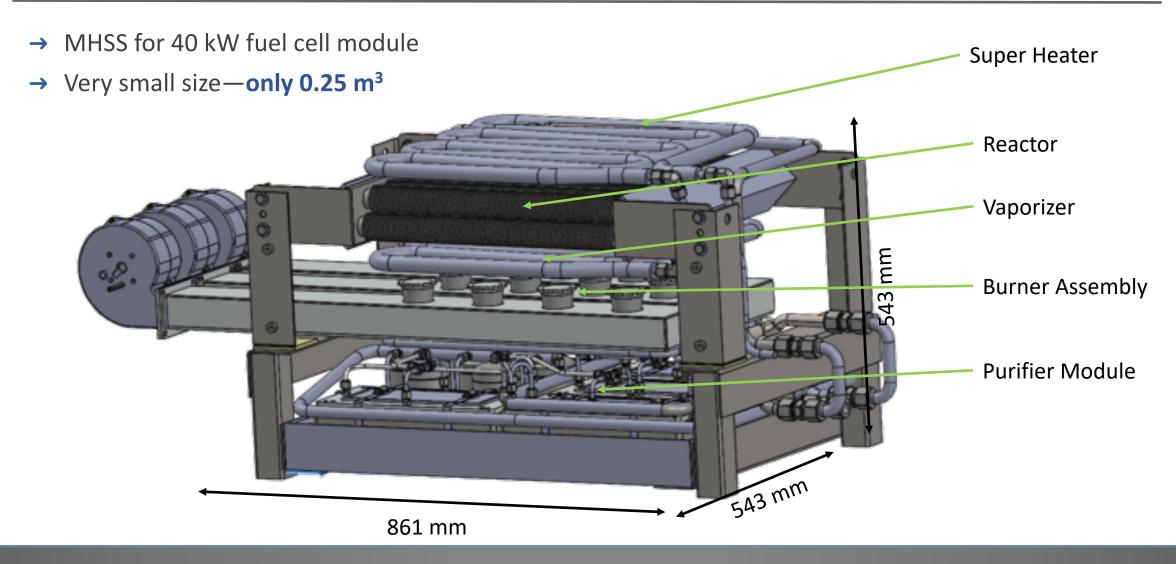
Break-through Solution for HD Fuel Cell Vehicles <u>Onboard</u> Methanol to H₂ Supply System (MHSS)

Problem

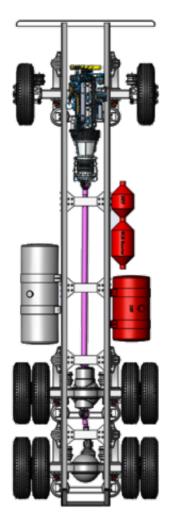
- → Heavy-duty fuel-cell vehicles cannot store enough compressed H₂ to achieve target distance between fueling
- \rightarrow H₂ fueling infrastructure is lacking, expensive to build
- → High-pressure compressed H₂ presents safety risk, and limits vehicle routes in some jurisdictions

Solution

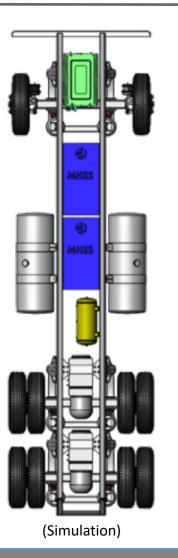
→ Convert methanol/water mix to high-purity H₂ onboard heavy-duty vehicles


On-Board H₂ Generation for HD Transportation

Designed to displace compressed H₂ to support mobile fuel cell propulsion solutions


- → Mature Technology: Developed over 20+ years, multiple product lines
- \rightarrow H₂ Production: Can scale to support 30 kW to 300 kW fuel cell solutions
- \rightarrow H₂ Purity: >99.97% with <0.2 ppm CO and <0.2 ppm CO2
- → Vibration Resistant: Designed for transportation applications
- → **Operation:** Designed for cyclic and variable operation
- → Feedstock: Methanol and DI water
 - 6.3 kg methanol/ mix water yields 1.0 kg pure H₂
- \rightarrow Lifetime: Designed for greater than 20,000 hour lifetime (H₂ production)
- → Manufacturing: Under e1 manufacturing license

Scalable. Reliable. Affordable.



Space Required on HD Truck for 1,000 mile Range MHSS <u>Most Comparable</u> to Diesel Solution

Diesel Solution

- •SCR (Catalytic Reactor) & DPF (Particulate Filter) already on truck
- •Long driveshaft make space between rails unusable
- •One 150 gallon side tank
- •<u>143</u> gallons needed for 1,000 mi. range

e1 MHSS Solution

- •Engine Bay and majority of area under cab available for 80 kW fuel cell system
- •MHSS (X2) fits between rails where driveshaft previously took space
- •Two 150 gallon side tanks
- •257 gallons needed for 1,000 mi. range
- Back of cab could also be used for MHSS

Impractical to fit enough compressed H_2 tanks onboard a HD truck to store <u>101</u> kg of H_2 to achieve 1,000 mi. range

About 2x space reduction onboard heavy vehicle is achieved by using methanol mix plus e1 MHSS

	Range	H₂	Storage, 35 Mpa	Methanol Mix	Methanol Mix
	(km)	(kg)	(m³)	(m ³)	+ MHSS
Bus	500	32.5	3.5	0.4	2.8
Bus	700	45.5	5	0.5	3
Nikola One, Toyota/Kenworth	1,000	89.3	9.5	0.5	4

MHSS Provides the *Lowest* Total Cost of Fuel Per Mile

Fuel Costs (Dollars)		Diesel ¹		CNG ²		H ₂ Gas ³		MHSS ⁴	
Per Gallon ⁽⁵⁾	\$	3.15	\$	2.11	\$	14.08	\$	1.26	
Per DGE	\$	3.15	\$	2.40	\$	15.99	\$	2.85	
Per H ₂ kg Eq.	\$	2.76	\$	2.10	\$	13.99	\$	2.49	
Per 1,000 Miles	\$	450	\$	363	\$	1,409	\$	324	
Per Mile	\$	0.45	\$	0.36	\$	1.41	\$	0.32	

(1) eia US Energy Information Administration, <u>https://www.eia.gov/petroleum/gasdiesel/</u>

(2) CNG Now, http://www.cngnow.com/average-cng-prices/pages/default.aspx

(3) California Fuel Cell Partnership, https://cafcp.org/content/cost-refill

(4) Methanex, <u>https://www.methanex.com/our-business/pricing</u>

(5) Diesel is DGE gallon, CNG is GGE gallon, H_2 is GGE gallon, MHSS is methanol gallon

MHSS & methanol reduces the cost per mile by > <u>25% vs Diesel</u>

1. Occupies smaller space on the vehicle compared to compressed H₂:

- Result is greater driving range between fueling
- 2. Very Low TCO:
 - Very low CapEx and OpEx, produce H₂ for \$3 to \$4 per kg onboard the HD Truck
- 3. Reduced Emissions:
 - <u>No</u> NOx | <u>No</u> SOx |<u>No</u> PM (Soot) | CO₂ emissions significantly reduced.
 (<u>zero net</u> CO₂ if renewable methanol is used)
- 4. Scalable:
 - Support 30 kW to 300 kW fuel cells per MHSS module
- 5. Simple / Familiar Feedstock Storage:
 - No stored high-pressure H₂ required, improved safety

Extreme cold weather operation available with methanol

Accelerates the Adoption of Fuel Cell HD Trucks

- → Gaseous H₂ has significant limitations in regards to logistics, infrastructure, cost, and is <u>not</u> practical for HD transportation
- → Liquid methanol is a low carbon fuel and provides high H₂ density, low-cost liquid logistics and storage, reduced safety risk versus compressed H₂, and <u>is practical</u> for HD transportation
- → e1's MHSS <u>unlocks</u> the benefits of methanol and <u>solves the "H₂ Challenge"</u>
 - Stationary L-Series solution for HRS provides the lowest TCO for H₂ per kg at the point of use
 - Mobile M-Series solution for HD transportation supports extended range requirements, allows for typical vehicle missions, and significantly reduces the investment in HRS
- → With renewable methanol and e1's MHSS products, you are driving towards a zeroemission sustainable future

Deploying e1's MHSS products will Accelerate the Adoption of Fuel Cell Solutions

Scalable. Reliable. Affordable.

The End

For More Information Contact: Robert Schluter President Element 1 Corp (e1) +1 (541) 678-5943 Robert@e1na.com

Scalable. Reliable. Affordable.

www.e1na.com