Overview of Global Methanol Fuel Blending

Gregory Dolan, CEO – Methanol Institute
Trinidad and Tobago Methanol Fuel Blending Forum
24 January 2019
Methanol: Broad Feedstocks and Markets

feedstock
- natural gas: ~65%
- coal: ~35%
- biomass & renewables: <1%

conversion

derivatives
- other solvents
- chloromethanes
- MTO
- methylamines
- DME
- biodiesel
- gasoline blending
- MTMA
- MTBE
- acetic acid
- formaldehyde

products

markets
- appliances
- automotive
- construction
- electronics
- fuel
- paint
- pharma
- and more….
Methanol is a versatile fuel source

Out of the ~80 million metric tons of methanol sold globally in 2018, energy and fuel uses represent 40% of total demand

FUELS
- Neat fuel
- Low blends
- High blends
- GEM
- MTBE
- Biodiesel
- DME & OME
- MTG

TECHNOLOGIES
- SI & CI engines
- Turbines
- Fuel cells

SEGMENTS
- Road & non-road transportation
- Power & heat generation
- Marine
Global Methanol Fuel Examples

Canada – Waterfront vessels
USA – motorsport fuel
UK – EN228 low blend
Iceland – M100 trials
Sweden – marine fuel
Denmark – fuel cells for vehicles
China – M15 to M100, boilers, cook stoves
New Zealand – M3
India – Methanol Economy roadmap
Africa – cook stoves
Israel – M15, power generation
Italy – Eni/FCA M15/E5
Egypt – M15 trials
Australia – GEM fuels
USA – motorsport fuel
UK – EN228 low blend
Iceland – M100 trials
Sweden – marine fuel
Denmark – fuel cells for vehicles
China – M15 to M100, boilers, cook stoves
New Zealand – M3
India – Methanol Economy roadmap
Africa – cook stoves
Israel – M15, power generation
Italy – Eni/FCA M15/E5
Egypt – M15 trials
Australia – GEM fuels
01 ROAD TRANSPORT
Solutions for gasoline and diesel engines

- Low blends
- Mid level blends
- High blends

- FAME
- SI/CI HDVs
- DME/OME
Various Gasoline/Diesel Blend Options

M3 – M15
- EU allows M3 (EN228) *Blended a.o. in UK and NL*
- China uses M15 *Estimated 7 million metric tons*
- ~75% of cars built by international automakers
- Israel standard for M15 gasoline blend

A20 – A30
- Automakers call for higher octane to facilitate greater engine efficiency *(higher compression, turbocharging, downsizing)*
- Methanol and ethanol alcohol fuels together at mid-level blends provide needed octane

M51-100
- ASTM D5797 standard revision
- M100 dedicated vehicles *(e.g. Geely)*
- Use of SI technologies in light duty vehicles
- Both SI and CI for heavy duty vehicles
- Few changes needed to existing vehicle technologies at low cost
40+ Years of Global Experiences with Methanol/Gasoline Blends

- German Automakers and Oil Refiniers conducted small vehicle fleet trials of methanol/gasoline fuels in mid-1970’s

- Germans selected M15 as highest methanol content for use in vehicles with 1980’s carburetor fuel systems and material compatibility

- Number of larger methanol/gasoline blend fleet trials conducted in late 1970’s / early 1980’s

 - Germany ~ 1,000 vehicles
 - Sweden ~ 1,000 vehicles
 - New Zealand ~ 950 vehicles
 - China ~ 500 vehicles

 Results: Methanol with corrosion inhibitors and co-solvent alcohols provided stable gasoline fuel, and protected fuel system metals in vehicles

- The State of California managed extensive methanol/gasoline fuel programs in 1980’s/1990’s

- Some China Provinces initiated commercial M15 market trials in 2004
Methanol - Practical Liquid Fuel Alternative

Graph:
- **X-axis:** Net gravimetric energy density / [MJ/kg]
- **Y-axis:** Net volumetric energy density / [MJ/l]

- **A Practical alternative**
 - Methanol
 - Ethanol
 - E85
 - M85
 - Diesel
 - Gasoline

- **Low energy density**
 - Batteries
 - 200 bar Methane
 - 700 bar H2

- **High on board storage costs**

Note:
- Dominant global transportation fuels, high energy density
Newer Model Year Vehicles Can Manage Higher Alcohol Blends

Ethanol vs Methanol Gasoline Blend Vehicle Performance

- CRC - E20 performed well for Model Year 1997+ Vehicles
- China Introduced M15 starting in 2005
- E15 Waiver for Model Year 2000+ Vehicles
- China Introduced M15 in 2004
- E10 Gasohol since 1978
- E5 in EU

Methanol in Fuel Vol % vs Oxygen in Fuel Wt %
Global Fuel Standards Allowable Methanol Content

- Earlier commercial Fuel Standards started with nominal 3 vol % methanol in gasoline

- Higher methanol content in gasoline allowed as global automotive fuel system technology and materials continue to improve in global vehicle fleets

<table>
<thead>
<tr>
<th>Market Region</th>
<th>Introduction Year</th>
<th>Maximum Volume % Methanol</th>
<th>Minimum Volume % Co-solvent</th>
<th>Maximum Wt % Oxygen</th>
<th>Corrosion Additives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe</td>
<td>EC Directive</td>
<td>1985</td>
<td>3.0</td>
<td>≥ Methanol</td>
<td>3.7 %</td>
</tr>
<tr>
<td>U.S.A</td>
<td>Sub Sim *</td>
<td>1979</td>
<td>2.75</td>
<td>≥ Methanol</td>
<td>2.0 %</td>
</tr>
<tr>
<td>U.S.A</td>
<td>Fuel Waiver</td>
<td>1981</td>
<td>4.75</td>
<td>≥ Methanol</td>
<td>3.5 % Required</td>
</tr>
<tr>
<td>U.S.A</td>
<td>Fuel Waiver</td>
<td>1986</td>
<td>5.0</td>
<td>2.5</td>
<td>3.7 % Required</td>
</tr>
<tr>
<td>China, Shanxi</td>
<td>M15 Standard</td>
<td>2007</td>
<td>15.0</td>
<td>For Water Tolerance</td>
<td>~7.9 % Required</td>
</tr>
</tbody>
</table>

* U.S. EPA’s Substantially Similar Regulation for commercial gasoline

Other countries evaluating introduction of methanol blending standards in gasoline: Egypt, Israel, Italy, New Zealand, Trinidad, Others
Methanol Blending Benefits

Ultra-high Efficiency Characteristics:

- Methanol use in spark ignition engines allows higher efficiencies by increasing the engine knock limit.
- Methanol has much higher flame speed, which allows for tighter combustion control and more precise torque management.
- Improving knock performance is important to help avoid undesired detonation while also allowing for highly effective recovery of energy from exhaust heat.

<table>
<thead>
<tr>
<th>Properties</th>
<th>Methanol</th>
<th>Gasoline</th>
</tr>
</thead>
<tbody>
<tr>
<td>High heat of vaporization</td>
<td>1100</td>
<td>325</td>
</tr>
<tr>
<td>(kJ/kg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High octane number</td>
<td>109</td>
<td>95</td>
</tr>
<tr>
<td>RON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High flame speed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laminar burning velocity at NTP (cm/s)</td>
<td>45</td>
<td>30</td>
</tr>
</tbody>
</table>
Methanol Air Quality & GHG Benefits

Inherently lower NOx and PM due to low temperature combustion properties;

C1 compounds in M85 compared to the much higher carbon content of reformulated gasoline

A lack of carbon-carbon bonds results in ultra-low particulate emissions;

The atmospheric reactivity of methanol is recognized to have lower ozone forming potential compared to the olefins and aromatics present in gasoline.
The California Methanol Experience
California Methanol Programs in the 1980s-90s, was fundamentally a technical success.

- Sixty retail fuelling stations
- 17,500 M85-compatible vehicles - first large scale production of Flexible Fuel Vehicles
- Over 200 million miles of successful vehicle operating experience along with a zero-incident health & safety record
However, despite the establishment of a California Fuel Methanol Reserve (CFMR), the low oil price during that period presented major competitive challenges...
POSITIVE OUTCOMES

- Distillation Properties
- Water Solubility
- Material Compatibility in FFVs
- Vehicle Emission Impacts (e.g., HCHO standard adopted and easily complied with via close coupled catalysts)
- Octane Effects
- Blending Vapor Pressure
- Toxicity of Vapors
- Risk Mitigation (e.g., flame arrestors, anti-siphoning devices)
Material Compatibility With Methanol Blends Well Understood

- Elastomer Compatibility with Methanol Blends well studied in the 1980’s

- Society of Automotive Engineers (SAE) Compatibility Guidelines established M15 as fuel standard for selecting materials used in vehicle fuel systems starting 1993
Neat Methanol Material Compatibility

<table>
<thead>
<tr>
<th>Material</th>
<th>Compatibility</th>
<th>Material</th>
<th>Compatibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>304 stainless steel</td>
<td>A-Excellent</td>
<td>Hypalon</td>
<td>A-Excellent</td>
</tr>
<tr>
<td>316 stainless steel</td>
<td>A-Excellent</td>
<td>Hytrel</td>
<td>B-Good</td>
</tr>
<tr>
<td>Acetal (Delrin)</td>
<td>A-Excellent</td>
<td>Kalrez</td>
<td>A-Excellent</td>
</tr>
<tr>
<td>Aluminum</td>
<td>A1-Excellent</td>
<td>Kel-Fr</td>
<td>A1-Excellent</td>
</tr>
<tr>
<td>Brass</td>
<td>A-Excellent</td>
<td>LDPE</td>
<td>A1-Excellent</td>
</tr>
<tr>
<td>Bronze</td>
<td>A-Excellent</td>
<td>Natural rubber</td>
<td>A-Excellent</td>
</tr>
<tr>
<td>Buna N (Nitrile)</td>
<td>A-Excellent</td>
<td>Neoprene</td>
<td>A-Excellent</td>
</tr>
<tr>
<td>Carbon graphite</td>
<td>A-Excellent</td>
<td>NORYLr</td>
<td>A-Excellent</td>
</tr>
<tr>
<td>Carbon Steel</td>
<td>A-Excellent</td>
<td>Nylon</td>
<td>B1-Good</td>
</tr>
<tr>
<td>Carpenter 20</td>
<td>A-Excellent</td>
<td>Polycarbonate</td>
<td>B1-Good</td>
</tr>
<tr>
<td>Cast iron</td>
<td>A-Excellent</td>
<td>Polyether ether ketone (PEEK)</td>
<td>A-Excellent</td>
</tr>
<tr>
<td>Ceramic Al203</td>
<td>A-Excellent</td>
<td>Polypropylene</td>
<td>A2-Excellent</td>
</tr>
<tr>
<td>Ceramic magnet</td>
<td>A-Excellent</td>
<td>PPS (Ryton®)</td>
<td>A-Excellent</td>
</tr>
<tr>
<td>ChemRaz (FFKM)</td>
<td>A-Excellent</td>
<td>PTFE</td>
<td>A-Excellent</td>
</tr>
<tr>
<td>Copper</td>
<td>B1-Good</td>
<td>PVC</td>
<td>A1-Excellent</td>
</tr>
<tr>
<td>CPVC</td>
<td>A-Excellent</td>
<td>PVDF (Kynar®)</td>
<td>A-Excellent</td>
</tr>
<tr>
<td>EPDM</td>
<td>A-Excellent</td>
<td>Silicone</td>
<td>A-Excellent</td>
</tr>
<tr>
<td>Epoxy</td>
<td>B1-Good</td>
<td>Titanium</td>
<td>B-Good</td>
</tr>
<tr>
<td>Fluorocarbon (FKM)</td>
<td>C-Fair</td>
<td>Tygon</td>
<td>A1-Excellent</td>
</tr>
<tr>
<td>Hastelloy-Cr</td>
<td>A-Excellent</td>
<td>Viton</td>
<td>C-Fair</td>
</tr>
</tbody>
</table>
Footnotes for Previous Table:

2. Explanation of Footnotes
 1. Satisfactory to 72°F (22°C)
 2. Satisfactory to 120°F (48°C)

Ratings -- Chemical Effect
A = Excellent.
B = Good -- Minor Effect, slight corrosion or discoloration.
C = Fair -- Moderate Effect, not recommended for continuous use. Softening, loss of strength, swelling may occur.
D = Severe Effect, not recommended for ANY use.
N/A = Information Not Available.

3. The only severe defect (level D) noted were for ABS plastic and polyurethane. However, neither of these materials is likely used in fuel wetted parts in vehicles, since aromatic compounds such as benzene, toluene and xylene each have an equivalent rating of severe defect level D for both ABS plastic and polyurethane. Thus, these specific material incompatibilities have no practical significance in the context of low level methanol blended transportation fuels.
Monitoring For Water Maintains Quality / Stability of Methanol Blends

- Good operating practices in gasoline distribution system maintain quality gasoline
UK BioMethanol Blending

- UK Department of Transport: Renewable Transport Fuel Obligation Report – 1 February 2018
- Averages 1% methanol in summer, and 1.5% in winter
- Biomethanol 57 Million liters, or 4% of UK total renewable fuel use
- “The supply of biomethanol has been increasing in recent years to an all-time high in 2016/2017.”

Australia Methanol Fuel Blending

- Methanol Fuels being commercialized in Australia
 - Project led by Coogee. Methanex is a partner
 - Methanol excise tax free status for 10 years (~A38c/litre)
 - Successful road trials and testing programs completed
 - Commercial roll out of GEM 8 (M5/E3) on hold pending methanol plant restart; GEM15 & GEM56 in the future

Selected Test Fuel Properties for ULP and Alcohol Blends

- Sulphur (mg/kg)
- Benzene (%vol x 10)
- Aromatics (%vol)
- Dry Vapour Pressure (kPa)
- RON
- O/C Ratio (x1000)
Israel Methanol Fuels Demonstrations

• Prime Minister Netanyahu established Fuel Choices Initiative
• Driven 1,000,000 kms on M15 fuels with improved power and torque
• In 2016, Israel adopted national standard for M15 fuels
• Fiat marketing M15 car in Israel, and Dor Chemicals has introduced M15 retails pumps
• 21 November 2017: With Italian Prime Minister, the CEOs of Eni and Fiat Chrysler Automobile sign MOU for joint development of technology reducing CO2 of road transport vehicles

• Eni had developed an “A20” fuel blend of 15% methanol and 5% bioethanol

• New blend being demonstrated in 5 FCA Fiat 500 vehicles in Eni’s Enjoy car-sharing fleet
Gas-to-Liquids: The Methanol Circular Economy

2006: G. Olah and the Methanol Economy

- Effective energy storage and gas into liquid conversion
- Existing infrastructure utilization
- As for ICE, alcohols already have a consolidated usage as a fuel
- Rapid go to market, blending methanol with gasoline to create the basis for the Methanol Economy

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>0.792 g/cm³</td>
</tr>
<tr>
<td>Boiling point</td>
<td>64.7 °C</td>
</tr>
<tr>
<td>Vapour pressure</td>
<td>13.02 kPa (at 20 °C)</td>
</tr>
<tr>
<td>Octane Number</td>
<td>130</td>
</tr>
<tr>
<td>Acidity (pKₐ)</td>
<td>15.3</td>
</tr>
<tr>
<td>Solubility in water</td>
<td>Miscible</td>
</tr>
</tbody>
</table>
A20: a New Methanol-based Alternative Fuel

CUNA specification (NC 627-02 July 2018)

<table>
<thead>
<tr>
<th>Property</th>
<th>Units</th>
<th>Limits MIN - MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research octane number, RON</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Motor octane number, MON</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>Load content</td>
<td>mg/l</td>
<td>5.0</td>
</tr>
<tr>
<td>Density (at 15 °C)</td>
<td>kg/m³</td>
<td>720.0 - 775.0</td>
</tr>
<tr>
<td>Sulfur content</td>
<td>mg/kg</td>
<td>10.0</td>
</tr>
<tr>
<td>Manganese content</td>
<td>mg/l</td>
<td>2.0</td>
</tr>
<tr>
<td>Nitrogen content</td>
<td>ppm</td>
<td>100</td>
</tr>
<tr>
<td>Oxidation stability</td>
<td>minutes</td>
<td>300</td>
</tr>
<tr>
<td>Existent gum content (solvent washed)</td>
<td>mg/100 ml</td>
<td>5</td>
</tr>
<tr>
<td>Water content</td>
<td>% (m/m)</td>
<td>0.2</td>
</tr>
<tr>
<td>Oxygen content</td>
<td>% (V/V)</td>
<td>10.0</td>
</tr>
<tr>
<td>Methanol</td>
<td>% (V/V)</td>
<td>12.0</td>
</tr>
<tr>
<td>Ethanol + other Alcohols (C3,C4)</td>
<td>% (V/V)</td>
<td>16.0</td>
</tr>
<tr>
<td>Ethers (5 or more C atoms) other oxgenates</td>
<td>Volume blending of these components is restricted to 10.0 % (m/m) maximum oxygen content including methanol oxygen.</td>
<td></td>
</tr>
</tbody>
</table>

- Formula Cost Reduction
- "Transparent" to all the E10 car vehicles
- No-chemical corrosion problems
- No-phase separation (in the car tank and gas-station)

CUNA NC 627-02 include also the evaporative class parameters to prepare A20 grade for summer, winter and transition period.
A20: Overall Transparency

After 1000 hours of test, no evidence of corrosion-related criticalities for A20.

For all types of tube tested, the ageing of A20 fuel does not lead to criticality in the mechanical behavior of the materials.

The results of the tests carried out so far confirm the compatibility of the fuel with FCA vehicles compliant with E10.

Next step: Ongoing process to check the compatibility to other carmakers and motorcycle manufacturers.
Fleet Test is On-going in Milan

Eni got approval from Italian Ministers to use A20 fuel for fleet tests as first step for selling into Italian market

In November 2017 the fleet tests started on Enjoy car sharing vehicles (n.5 Fiat 500) constantly monitored and refueled by the Enjoy team on a Eni station c/o Milan

Endurance test

- The car subjected to accumulation has run 100,000 km. All the controls (emissions, etc.) have been successful
China Leading World in Methanol Fuel Use

China methanol consumption in fuel products
thousand barrels per day

https://www.eia.gov/todayinenergy/detail.php?id=30072
China Methanol Fuel Status

2009

China adopted national standards for M85 and M100

2012

MIIT “high proportion” methanol demonstration to serve as the basis for M85 vehicle standards in Shanxi, Shaanxi, and Shanghai, and has expanded to other provinces and cities.

2014

7 million tons (2.3 billion gallons/8.7 billion liters) of methanol blended with gasoline, against total gasoline consumption of 2.25 million barrels per day or 34.5 billion gallons/130 billion liters

180,000

Vehicles converted to methanol fuel, mostly taxis.
Geely M100 Vehicles

- China’s Geely Automotive Holdings is global leader in the commercialization of M100 vehicles
- Geely has two methanol engine and five methanol vehicle manufacturing bases, with an annual methanol vehicle production capacity of 300,000 - 500,000 cars
- Now introduced M100 bus, long-haul truck and medium-duty truck
• Prof. Chunde Yao of Tianjin University has developed Diesel Methanol Compound Combustion (DMCC) technology.
• Fine-tuned diesel combustion by adjusting methanol/diesel ratio at intake manifold.
• Diesel operation for start-up and low load, and homogeneous diesel methanol operation for medium/high load.
• Retain diesel fuel system and EGR, add 2nd fuel tank for methanol, port fuel injection system, and revisions to ECU.
• No NOx aftertreatment, 5% more efficient than today’s diesel engines, up to 40% diesel substitution
EU Rally Racing with GEM Fuels

- Methanol Institute, Methanex and OCI NV (Natgasoline) sponsored GEM fuels in 2013, 2014, and 2015 World Rally Championship.

- GEM Fuels: 37% Gasoline; 21% Ethanol; 42% Bio-Methanol

- 2013 Junior WRC and 2014 Fiesta Trophy Results:
 - 24 young drivers in 10 Rally Race events across Europe drove 16,000 km
 - Consumed 38,000 liters of GEM fuels
 - Saved 66,000 kilograms of CO2
India: Roadmap to Methanol Economy

- September 2015, NITI Aayog formed Methanol Economy Expert Group
- September 2016, MI jointly organized Methanol Economy International Seminar held in Delhi
- M15 rollout in January 2019
- Working towards M100 and MD95 fuel blending, demonstrations for cook stoves, marine fuels, railways, coal-based methanol production
Green Methanol Infrastructure consortium opened the first methanol fuel pump in Europe.

Cars/vans use Serenergy RMFC technology as range extender and CRI methanol as fuel.

Increasing range of battery powered vehicles from 200 to 800 kilometers.

Serenergy fuel cells also in Gumpert RG Nathalie, a methanol fuel cell powered electric supercar with a 1,200 km (745 mile) range and a top speed of 300 km/h (186 mph).
02 MARINE FUELS
• The International Maritime Organization has adopted emission regulations transforming the shipping industry

• In 2020, global SOx reductions take effect

• By 2050, greenhouse gas emissions must be cut in half
Options available to ship owners

- HFO + scrubbers
- MGO or HFO/MGO Hybrid
- LNG
- Methanol

https://www.methanol.org/marine-fuel/
Examples of vessels running on methanol

DUAL FUEL
- 7x - +4
- chemical tankers
- ROPAX ferry
- Pilot boat
- MOL, WL, Marininvest
- Stena Line
- MI/SMA ScandiNaos
- 2 stroke MAN
- 4 stroke Wärtsila
- high speed Scania, Weichai
- new build
- retrofit

FUEL CELL
- 1x
- Tourist boat
- Innogy HTWG Konstanz
- Serenergy fuel cell stacks
- retrofit

PROJECT and R&D
- 1x
- Ferry
- Viking Line
- Cruise ships, fishing boat, barge, dredge, a.o.
- SUMMETH/MARTEC, Lean Ships, Methaship, Billion Miles, FiTech, India, PCG Product Vessel, NTU Test Bed Port of Rotterdam Barge
- SI hybrid, dual fuel, etc.
- new build & retrofit
Available in many ports around the world

Methanol storage capacity estimates (thousand tons)
Methanol bunkering easy and clean

- Liquid at atmospheric pressure
- Available in many ports around the world and along rivers
- Low infrastructure cost
- Flexible, modular system
- Environmentally friendly as it’s biodegradable
SAFER FOR THE ENVIRONMENT

LC50, LC = LETHAL CONCENTRATION
Concentration in water, at which half the population died within specified test duration

Safer than Diesel by a factor of 240 times
Safer than Gasoline by a factor of 1900 times

Methanol$^{[1]}$
15,400 (mg/l)

Additional Source: Meyer-Werft

[2] Petrobras/Statoil ASA, Safety Data Sheet, ECHA registration dossier Gasoline
[3] GKG/ A/S Dansk Shell, Safety Data Sheet

Additional Source: Meyer-Werft
Methanol Industrial Boilers in China

- Industrial boilers are widely used for heating and industrial stream
- Many cities in China prohibiting use of coal and diesel fuels
- Capacity ranged from 1 to 20 ton/hour
- One steam ton capacity consumes 110 kg of methanol, and runs 24/7
- Methanol fuel is used neat or as blend with diesel fuel
- Standards developed with MI and Methanex support
- **Estimated more than 1000 units, consuming over 2 MMTs methanol in 2017**
- **Growing to 5 MMT in 5 years**

https://www.methanol.org/energy/boiler-cookstoves/
Methanol Cook Stoves in China

- **Different types methanol cook stoves:** Single heating, stir fry, steaming
- Widely used in restaurants, central kitchens, mainly cost-driven
- Simple storage and transportation, filling the gap of pipeline NG supply
- Fuel: 100% methanol to methanol blends usually with water
- **Market for Cooking Application estimated over 5 MMTs in China in 2017**
- **Growing to 7-8 MMT in 5 years**
Glass/Ceramic Kilns and Tobacco Drying

- China also developing other new markets for the use of methanol:
 - **Glass/ceramic kilns** – China produced 60% of world’s glass products; methanol uses less air intake and produces cleaner flue gas for superior finish
 - **Tobacco drying** – One in every 3 cigarettes smoked in the world are smoked in China
Methanol a Hydrogen Carrier for Fuel Cells

- Horizon Energy Systems (Singapore)
- Oneberry (Singapore)
- Altergy (USA)
- Palcan (China)
- Serenegy (Denmark)
- SFC Energy (Germany)
- Toshiba (Japan)
- Ultracell (USA)
- Blue World Technologies (Denmark)
04 CONTACTS
Contacts

Zhao Kai
Chief China Representative
kzhao@methanol.org

Eelco Dekker
Chief EU Representative
edekker@methanol.org

Greg Dolan, CEO
gdolan@methanol.org

Larry Navin, Director, Government & Public Affairs, Americas/Europe
lnavin@methanol.org

Nov Bajwa, Operations & Web Media Coordinator
nbajwa@methanol.org

Chris Chatterton, COO
chatterton@methanol.org

Tim Chan, Manager, Government Relations and Business Development, Asia Pacific/Middle East
tchan@methanol.org

Belinda Pun, Executive Assistant
bpun@methanol.org

www.methanol.org www.methanolfuels.org