

Charting a course for methanol marine fuel

Eelco Dekker, Chief EU Representative Methanol Institute Athens, November 30th, 2018 01 Who we are

A global industry association

- First formed in 1989, the Methanol Institute (MI) serves as the trade association for the global methanol industry.
- MI represents the world's leading methanol producers, distributors and technology companies from offices around the world

MI provides value to its members by:

- Ensuring safe handling of methanol and its derivatives
- Promoting methanol growth by furthering methanol as an essential chemical commodity and an emerging source of clean and renewable energy
- Influencing global regulatory and public policy initiatives that impact the methanol industry

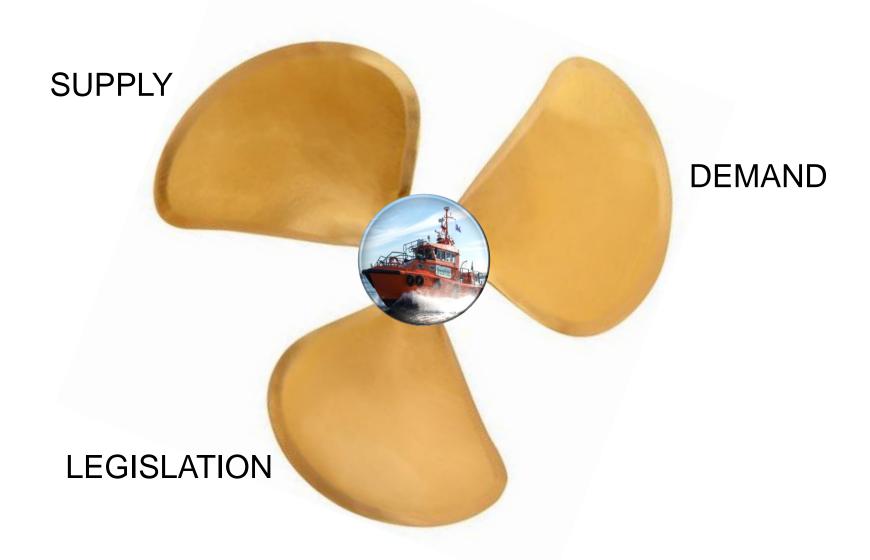
2018 members

CoogeeChemicals

Working close cooperation with

- **European Sustainable Shipping Forum (ESSF)**
- **International Bunker Industry Association**
- Lloyd's Register
- **Dangerous Goods Advisory Council**
- American Chemistry Council
- Asian Clean Fuels Association
- China Ministry of Industry & Information Technology
- China Nitrogen Fertilizer Industry Association
- Chinese Association of Alcohol & Clean Ether Fuels & Automobiles
- European Chemical Industry Council (CEFIC)
- Formacare
- Gasification & Syngas Technologies Council
- German Regenerative Methanol Network
- Gulf Petrochemicals and Chemicals Association
- International DME Association
- International Methanol Producers & Consumers Association
- National Biodiesel Board
- National Institution for Transforming India (NITI Aayog)
- Oslo University Hospital
- Peking University Centre for Global New Energy Strategic Studies
- Solar Fuels Institute

Biodiesel

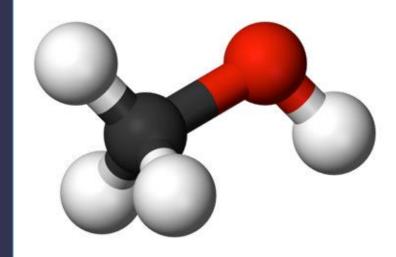


Several options available to ship owners

Driving forces for methanol marine fuel

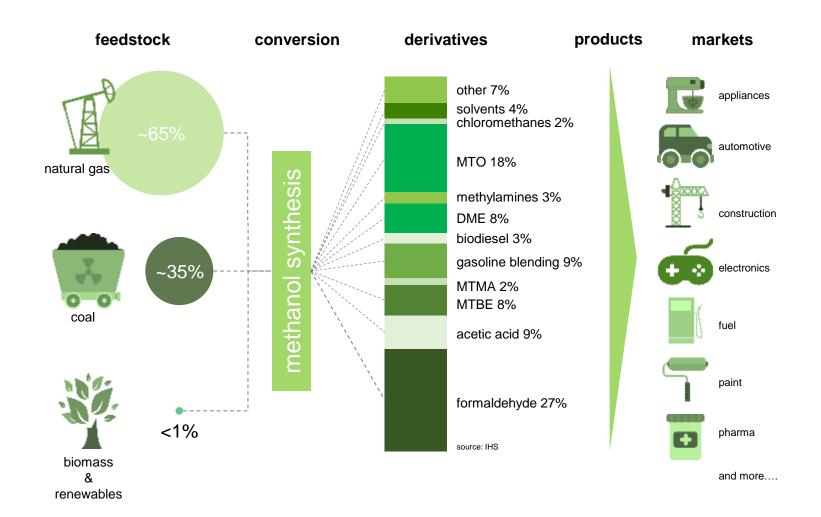
02 Methanol supply

Methanol is simplest of alcohols

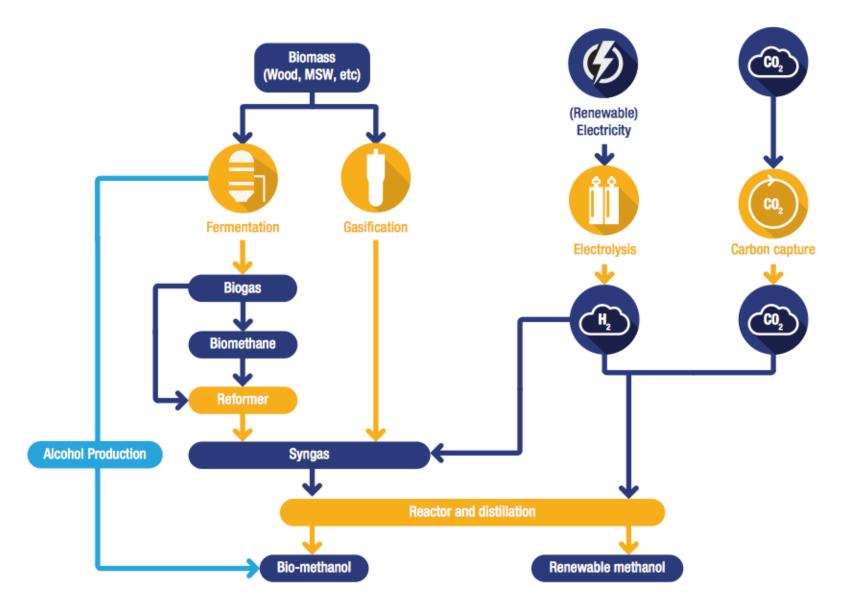

- Simple molecule rich in hydrogen, with only a single carbon bond
- Clear and colorless liquid at room temperature and ambient pressure
- Also known as "wood alcohol," methanol can be produced from a wide range of feedstocks

Formula: CH₃OH

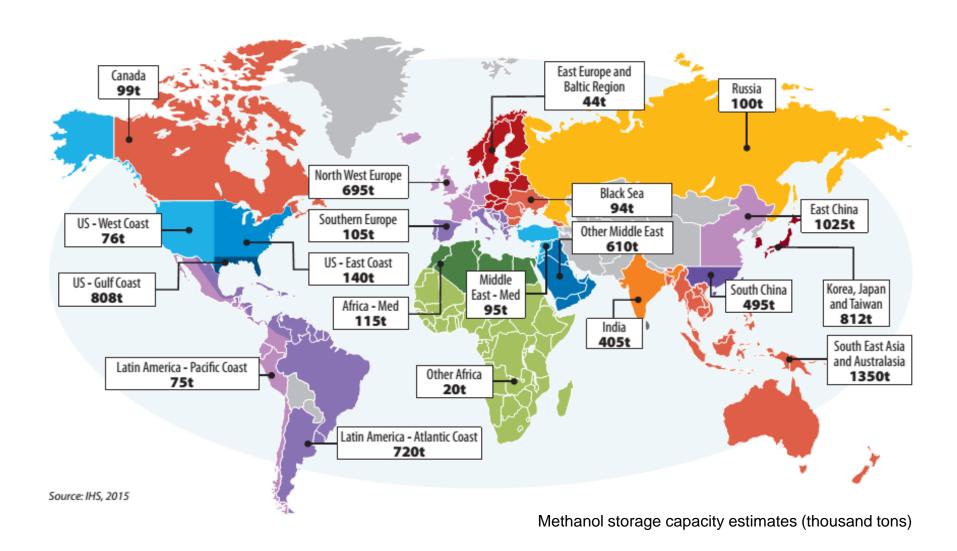
Density: 0,792 g.cm⁻³


Molar mass: 32,04 g mol⁻¹

Appearance: colourless liquid

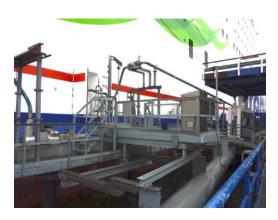


Broad feedstock range, many applications



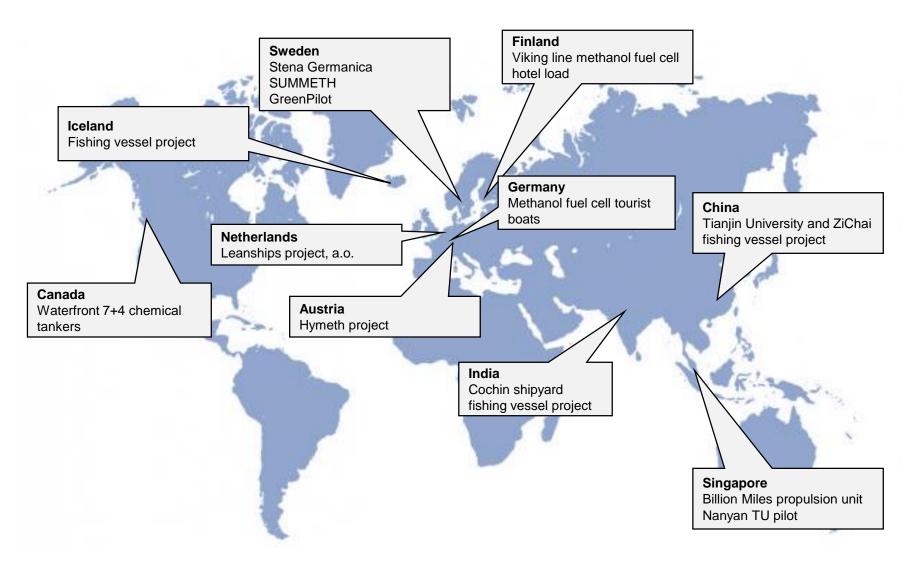
Several low carbon pathways exist

Widely available around the world



Methanol is easy to handle

- Liquid at atmospheric pressure
- Available in many ports around the world and along rivers
- Low infrastucture cost
- Flexible, modular system
- Environmentally friendly as it is biodegradable



03 Methanol marine fuel demand

Many marine initiatives around the world

Examples of vessels running on methanol

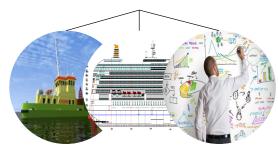
COMBUSTION ENGINE

7x +4x	1x	1x
chemical tankers	ROPAX ferry	Pilot boat
MOL, WL, Marinvest	Stena Line	Swedish Maritime Admin.
2 stroke MAN	4 stroke Wärtsila	high speed Scania, Volvo, a.o.

retrofit

retrofit

FUEL CELL



2x	1x
Tourist boat	Ferry
Innogy	Viking Line

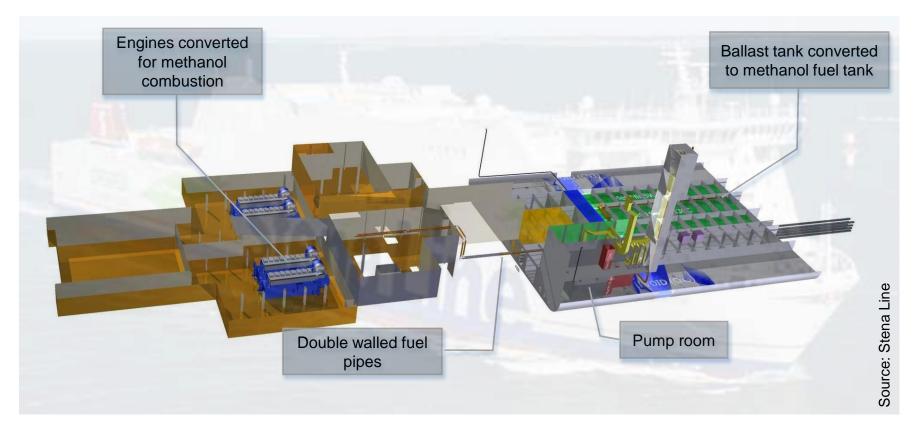
Serenergy fuel cell stacks

retrofit retrofit

PROJECT and R&D

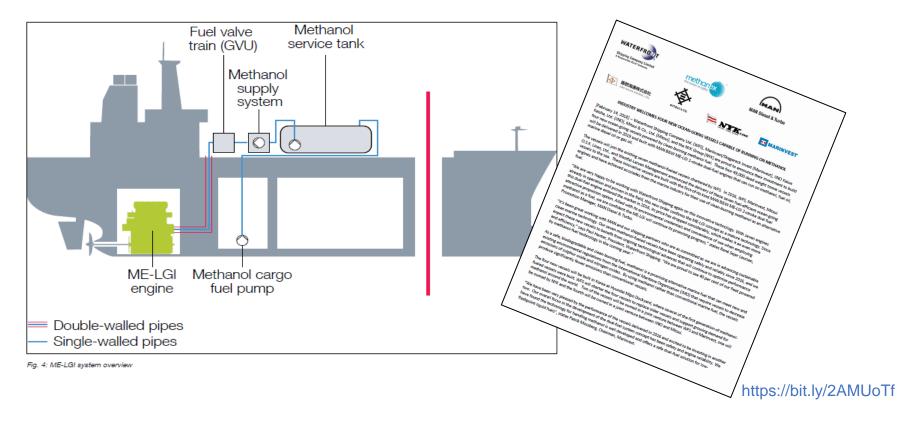
Cruise ships, fishing boat, barge, dredge, a.o.

Billion Miles, Summeth/Martec, HyMeth Ship, Lean Ships, Methaship, a.o.


SI hybrid, dual fuel, etc.

new build & retrofit

new build


Dual fuel engine ensures flexibility

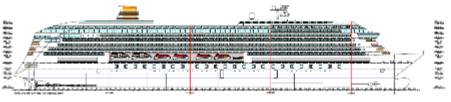
- Pilot fuel assisted diesel combustion concept
 Methanol is ignited by a small amount of diesel pilot fuel
- Crew and passenger safety top priority
 Safety measures include a.o. double walled pipes, ventilation, high pressure oil valves, nitrogen blanketing

Four new ocean going vessels on order

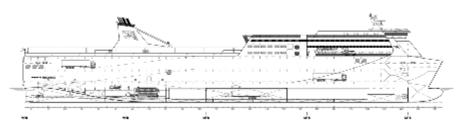
- Over 20.000 service hours on methanol
- Most challenges solved; few remaining challenges expected to be solved soon
- Methanol: water mixture reduces NOx below Tier III levels

Methaship methanol low carbon pathway

Two designs – 1x cruise and 1x ropax


Project partners: Lloyds Register, Meyer Werft, HELM, Flensburger Schiffbau-Gesellschaft

MethaShip is a national research project funded by the BMWi (Federal Ministry for Economic Affairs and Energy)


45-month project, closed on 28 May 2018

https://bit.ly/2Qla2uC

Main data	
Length	238.0 m
Width	32.2 m
Tonnage	62 800 GT
Passengers	2050 + 570 Crew
Engines	4 x 9 MW medium speed engines
Main fuel	Methanol

Main data	
Length	199.8 m
Width	28.6 m
Draught	6,5 m
Passengers	600 + 50 Crew
Engines	Dual Fuel 2 x 9 MW medium speed
Main fuel	Methanol

Lean ships looks at high speed engines

Part of a larger Horizon 2020 project, the team aims to demonstrate highspeed diesel engine converted to dual fuel operation, and maintain 100% diesel capability

The outcome could offer a possible retrofit solution, including for smaller vessels

Testing is performed on a Volvo Penta D7 engine at Ghent University

Various projects in Sweden

Sustainable Marine Methanol supported by MI Road ferry with engine capacity of about 350 kW

The research concluded that there are no obstacles to the efficient use of Methanol in a converted diesel engine and that smaller vessel conversion projects are feasible and costeffective, with levels of safety that easily meet existing requirements

Potential for bio-methanol to be progressively blended into the mix as more becomes available

https://bit.ly/2D3o4x3

GreenPilot project received funding from MI and Swedish Maritime Administration

Tested WeiChai 6-cyl, 365kW, M100 converted NG engine provided by FiT, and Scania converted NG engine in high-speed, rescue/pilot vessel

Sea trials started on WeiChai engine in March, which concluded year end, 2017

Closing workshop was 3 May 2018 Gothenburg

https://bit.ly/2qvGCPg

LR fuel calculator helps make comparison

Vessel Type 1	Capacity	•	Design	Speed 6	Average load	led DWT 6	Annual Dis Travelled	
Bulk Carrier \$	176506	DWT	11.7	© Kts	141204.8	tonnes	56712	N
elect open or closed op option for EGCS	Methane S	ilip 🕣	Time spe	nt inside ECA	Asset exped	eted life 3	Annual 1 consump	tion
Open	3	%	50	%	25	years	conventiona 5756.213	fuel mt
Closed								
			Cal	culate				

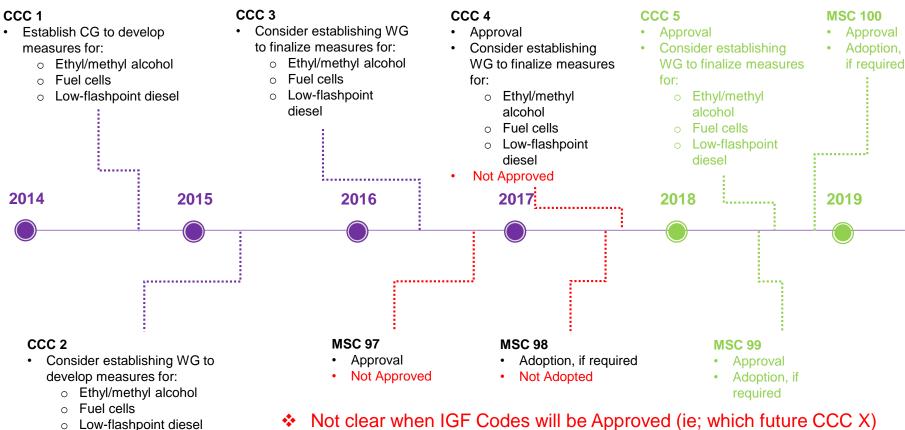
04 Rules and regulations

Methanol enables significant emission reductions

source: Stena Line

Emission reductions when compared to alternative fuels currently available (fuel oil)

Methanol is also a low flash point fuel


Properties	HFO	MGO	LNG	Methanol
Physical state	liquid	liquid	cryogenic liquid	liquid
Boiling temperature at 1 bar [°C]	-	175 – 650	⁻ / ₋ 161	65
Density at 15°C [kg/m³] (LNG shown at -/-160°C)	989	Max. 900	448	796
Dynamic viscosity at 40°C [cSt]	-	3,5	-	0,6 (at 25°C)
Lower heating value [MJ/kg]	40	43	50 (at -160°C, 1 bar)	20
Lubricity WSD [µm]	-	280-400	-	1100
Vapour density air = 1	-	>5	0,55	1,1
Flash point (TCC) [°C]	>60	>60	⁻ /-175	12
Auto ignition temperature [°C]	-	250-500	540	464
Flammability limits [by % vol. of mixture]	-	0,3 – 10	5 – 15	6 - 36

Source: EMSA

Study on the use of ethyl and methyl alcohol as alternative fuels in shipping

Draft guidelines methanol completed

- Not clear when IGF Codes will be Approved (ie; which future CCC X)
- Not clear after IGF Codes will be Approved, at which MSC they could be Adopted In Principle
- IMO has reserved 2024 by which IGF Codes must come into Force
- After Approval, IGF Codes may be implemented at flag state level with the understanding that additional amendments may be added, requiring compliance, before IGF Codes come into Force

sub-committee(s)

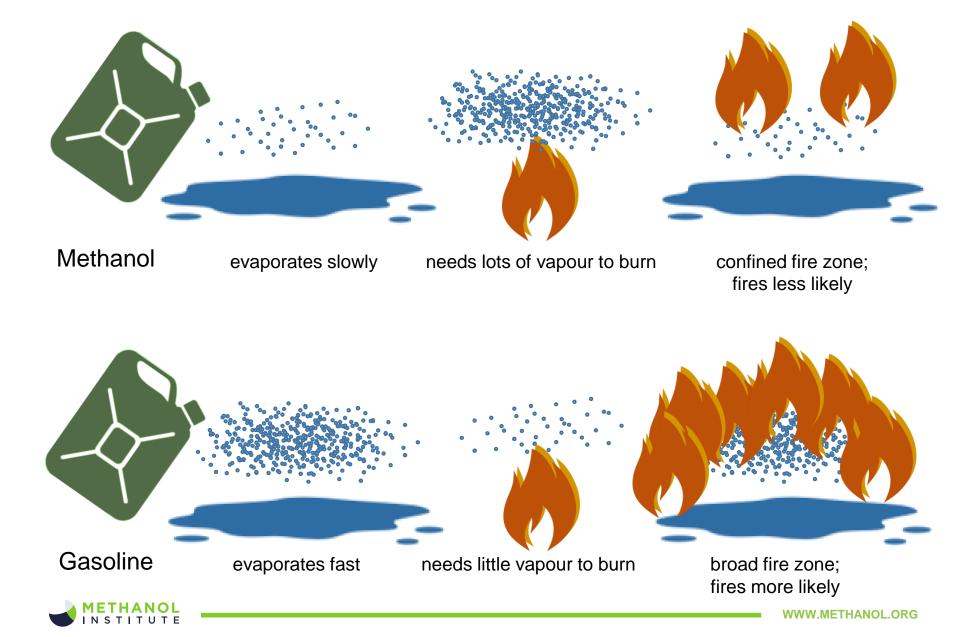
Consider re-establishing CG

Consider the need for other sub-

committees to examine drafts or

parts of them and, if so, make the necessary request to the relevant

Comparing apples to apples



- A	Annual Control of Control	The second secon	
	METHANOL	DIESEL	GASOLINE
Hazard pictograms (CPL)			
Signal word: (CPL)	Danger	Danger	Danger
Hazard statements (CPL)	H223 Highly filammable liquid and vapour. H303 Toxic if wallowed. H313 Toxic motact with skin. H333 Toxic motact with skin. H337 Causet damage to organs.	H226: Flammable liquid and vapour. H304: Nay be fatal if swallowed and enters airways. H313: Causes shir Intration. H313: Expert and intration. H313: Suspected of causing cancer. H317: May cause damage to organs through prolonged or repeated exposure. H411: Toxic to aquatic life with long listing effects.	H224: Extremely flammable liquid and vapour. H300: May be fatal if swallowed and enters sinways H313: Catuse skin intriation H380: May cause genetic defects H380: May cause genetic defects H380: Suppected of damaging fertility or the unborn child H380: May cause cancer H380: Suppected of damaging fertility or the unborn child H3810: May cause drownsiness or dizziness H4811: Toxic to aquetic life with long listing effects
Precautionary statements (CLP)	\$100. Was proving from heat. In somewing \$100. Where proving depices, preferring in obtaining, one production, there graduation \$100.00 May require depices, preferring in obtaining the serving state of an aparticul control of the STREAM STR	1930: Other spent interfaces where are F200 from spent interfaces and interfaces from from plant and non-the sensitive F200 from spent interfaces from from plant and non-the sensitive F200 from spent interfaces from from plant and planting applyment F200 from sensitive spent interfaces from from planting planting applyment F200 from the reading from spent spent and from the planting applyment F200 from the reading from from spent and from from from from from from from from	2020. Death regards internations below seas 2020. Be not include all all safety amenations have been read and understood 2020. Rays away from heal-figured/sigms. Emmaylvis carlaise. No amoting 2020. Rays away from heal-figured/sigms. Emmaylvis carlaise. No amoting 2020. Rays away from heal-figured/sigms. Emmaylvis carlaise. No amoting 2020. Rays away from heal-figured/sigms of emmaylvis carlaise. 2020. Rays away from point discharged employees 2020. Sigms and years and embasis of employees 2020. When proteiners y measures against dation dashings 2020. When health this capital years are supported as a second proteiners. 2020. Rays and embass to the embassis of embassis of employees 2020. When health this capital years are supported as a second release to the embassis of th

Source: Green Pilot Project

Methanol has lower fire risk

Putting things in perspective

LC50 - Lethal dosis fish

Gasoline [1] 8,2 mg/l Methane [2] 49,9 mg/l

Diesel [3] 65 mg/l Heavy Fuel Oil [4] 79 mg/l Methanol ^[5] 15.400 mg/l

Sources:

[1] Petrobras/Statoil ASA, Safety Data Sheet, ECHA registration dossier Gasoline

[2] ECHA, European Chemicals Agency, registration dossier Methane

[3] ECHA, European Chemical Agency, registration dossier Diesel

[4] GKG/ A/S Dansk Shell, Safety Data Sheet

[5] ECHA, European Chemical Agency, registration dossier Methanol

Safer for the environment

	Maritime accident	Maritime accident	Simulation
Ship	Erika	Tanio	-
Fuel	Heavy Fuel Oil	Heavy Fuel Oil	Methanol
Released amount	19 000 t	13 500 t	10 000 t
Affected coastline	400 km	200 km	0 km
Total damage:	\$914M	-	-
Cleaning	\$100M	\$50M	\$0
Fishing industry	\$98,3M	-	-
Tourist industry	\$400-500M	-	-
Claim for damages	\$120M	\$17M	-
Killed birds	≈ 60,000	≈ 40, 000	-> 0

Source: MethaShip

05 Moving forward

MI focused actions on marine fuels

- Participate in formation of international regulations and safe handling guidelines for methanol as alternative fuel
- Work with engine OEMs on new build and conversion offerings across multiple scales
- Encourage and support pilot demonstrations of methanol marine fuels in multiple markets, to validate environmental, technical and economic merits
- Direct marketing campaign

Methanol...

- is plentiful, available globally
- can be made 100% renewable
- runs well in existing engine technology and has potential for further optimization
- complies with increasingly stringent emission reduction regulations
- requires only minor modifications to current bunkering infrastructure
- is biodegradable!
- safe handling can rely on long history and experience in shipping and industry
- cost are relatively modest and drop as experience mounts
- shows slight regional price variation
- http://www.methanol.org/marine-fuel/

06 Contacts

CONTACTS

• GREG DOLAN

CEO

• EELCO DEKKER

Chief EU Representative
edekker@methanol.org

CHRIS CHATTERTON
 COO
 cchatterton@methanol.org

gdolan@methanol.org

KAI ZHAO
 Chief China Representative
 kzhao@methanol.org

TIMOTHY CHAN
 Director of Government Affairs
 Asia Pacific/Middle East
 tchan@methanol.org

LARRY NAVIN

Senior Manager External Affairs navin@methanol.org

SINGAPORE (HQ)

10 Anson Road #32-10 International Plaza Singapore 079903 + 65 6325 6300

WASHINGTON D.C.

225 Reinekers Lane Suite 205 Alexandria, VA 22314 +1 (703) 248-3636

BRUSSELS

Square de Meeûs 38-40 B-1000 Brussels Belgium +32 241 6151

BEIJING

#511, Pacific Sci-tech Development Center Peking University No. 52 Hai Dian Rd. Beijing 100871, China +86 10 6275 5984

