

Conventional Methanol Production

STITUTE

Methanol Production – Coal Gasification

Methanol Production Bridge to Sustainability

Methanol is a "future proof"
molecule that can be made
from conventional fossil
sources and emerging
renewable feedstocks.

 Expansion of energy markets for methanol builds demand for sustainablysourced and locallyproduced methanol.

Several Renewable Production Pathways Exist

WWW.METHANOL.ORG

Option 1

BioMCN – Biomethane to Biomethanol

WWW.METHANOL.ORG

CO₂ Recovery & Utilization

CO₂ Recovery & Utilization

QAFAC Utilization of Recovered CO₂

Option

•500 MTPD of CO2 is recovered from the flue gas using MHI's proprietary KS–1[™] solvent and injected in synthesis loop for boosting Methanol production.

•The capacity of Methanol Plant has increased by 300 MTPD with addition of CO2 in synthesis gas mixture as excess H2 is available for the methanol reaction.

•Thus, QAFAC's Methanol Plant became Self–sufficient for raw material (CO2).

CO₂ Recovery & Utilization

Option

Back to Basics

Option 3

Enerkem – Waste to Methanol

ENERKEM ALBERTA BIOFUELS

Capacity:	38 million litres per year	
	(i.e. 1 X standard Enerkem system)	
Feedstock:	25-year agreement with City of Edmonton for 100,000 dry tonnes of MSW per year	
Products:	Biomethanol, cellulosic ethanol	

Chemrec - From Black Liquor to Methanol to bio-DME

Option

NSTITUTE

European Project BioDME 7th Framework Programme

WWW.METHANOL.ORG

Option 3

VärmlandsMetanol– Wood Based Methanol Project

Liquid Electricity

Pathway to Storing Renewable Electricity

- Converting intermittent renewable power into 'liquid electricity' is an alternative option to e-mobility, while reducing CO₂
- The amount of energy stored in one cubic meter of methanol equals the storage capacity of 222 battery-electric BMW i3's

on

Methanol Fuel Examples Around the World

Application	Current Methanol Demand (2015E, -000-Tons)	Potential Market Demand (-000- Tons)
Alternative Fuels		
- Gasoline	11,571	40,000-50,000
- Biodiesel	1,197	25,000-40,000
- DME	4,970	10,000-15,000
 Power Generation & Others 	>1	40,000-60,000
Fuel Cells	8	3,000-8,000
Methanol-to-Olefins	16,683	30,000-40,000
Methanol-to-Gasoline	250	15,000-35,000

Global Insight, Asian Perspective[™]

WWW.METHANOL.ORG

Methanol in Gas Powered Turbines

In 2011, Israel Electric Corp (IEC) & Dor performed trial conversion at Caesara power plant located in valley in Eilat

Previously used diesel-fuelled turbine for peak power. Limited to 300 hours of operation annually; no pipeline natural gas access

June 2014 commercial operation of 100% methanolfuelled Pratt & Whitney FT4C Twin Pack 50 MW gas turbine.

Dor Findings

•Low-cost fuel system retrofits to methanol, with this initial project costing \$5 million.

•Yields significant NOx, SO2, and particulates emission reduction, without affecting performance.

•Unit now permitted to operate for 2,000 hours per year.

•Methanol consumption is *30 tons per hour*.

•This technology (*first of its type in the world*) can be adopted in many other places (mainly Islands) where due to no natural gas supply, are currently using polluting fuels.

Methanol in Cooking Stove Applications

•Traditional cooking fuels (wood/charcoal, dung, kerosene, paraffin, diesel, coal, LPG) can emit significant CO2 and harmful particulates, potential fire hazards.

•Nigeria (kerosene stoves), South Africa (paraffin), China (coal).

•Project Gaia pilot project and studies in Nigeria since 2005.

•Distributed fuel already in canister: no handling of fuel by beneficiaries; results very successful.

Methanol in Cooking Stove Applications

Methanol-powered cookstoves

Methanol in Cooking Stove Applications

China is Leading the World

•Methanol for cooking applications in China since 1983

•Potential for large amounts of methanol needed for future cooking applications in China.

•Use of alcohol in cooking fuels could reduce annual direct coal burning by 3,172 MW and CO₂ emissions decrease of 8.25 billion tons.

Methanol Fuel Cells

Methanol important in fuel cells as an environmentallyfriendly hydrogen carrier fuel

TWO TYPES OF FUEL CELLS

Direct Methanol Fuel Cells (DMFCs):

- Subcategory of proton exchange fuel cells
- Liquid MEOH used as the fuel.
 - Easy to transport, energy-dense/stable
- Low efficiency

- Good for portable power
- Waste: CO₂ & water vapor

Reformed Methanol Fuel Cells (RMFC) / Indirect Methanol Fuel Cells (IMFCs):

- Methanol reformed to hydrogen gas before being fed into fuel cell.
- Higher efficiency, smaller cell stacks, better operation/storage at low temps.
- Heat mgt/insulation systems required

Primary Applications for Fuel Cells

Charging/Replacement of batteries

- Forklifts (Oorja Protronics)
- Camper vans (SFC Energy)

Provision of off-grid or grid-support power

- Backup power supply to telecoms towers
- Remote communities
- Desalinization plants
- Off-grid mining

Major Global Methanol Fuel Cell Producers

- Ballard Power Systems (Canada)
- Horizon Fuel Cell Technologies (Singapore)
- Oorja Protonics (United States)
- Panasonic (United States)
- SFC Energy (Germany)
- Toshiba (Japan)

CONTACTS

01 • GREG DOLAN CEO gdolan@methanol.org

COO

05

EELCO DECKER Chief EU Representative edekker@methanol.org

06

07

•

KAI ZHAO Chief China Representative kzhao@methanol.org

03

02

DOM LAVIGNE Director of Government Affairs <u>dlavigne@methanol.org</u>

CHRIS CHATTERTON

cchatterton@methanol.org

04

Senior Manager External Affairs <u>navin@methanol.org</u>

LARRY NAVIN

APRIL CHAN Executive Manager achan @methanol.org

08

SHEEVA NOSHIRVAN

Executive Assistant snoshirvan@methanol.org

SINGAPORE (HQ)

10 Anson Road #32-10 International Plaza Singapore 079903 + 65 6325 6300

WASHINGTON D.C.

225 Reinekers Lane Suite 205 Alexandria, VA 22314 +1 (703) 248-3636

BRUSSELS

Square de Meeûs 38/40 B-1000 Brussels, Belgium +32 241 6151

BEIJING

#511, Pacific Scitech Development Center Peking University No. 52 Hai Dian Rd. Beijing 100871, China +86 10 6275 5984

