

# Part 1-B: Physical & Chemical Properties of Selected Fuels (1) -

#### **GENERAL INFORMATION**

| SECTION 1  GENERAL INFORMATION               |                                            |                                                              |                                                         |                                                                                              |                                                                                             |                                                         |                                                                |                                                                   |  |  |  |
|----------------------------------------------|--------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|
| Property/Information                         | Hydrogen<br>H <sub>2</sub><br>(gas)        | <b>CNG</b><br>CH₄ 83-99%; C₂H <sub>6</sub><br>1-13%<br>(gas) | Propane<br>C3<br>(liquefied<br>gas)                     | Methanol<br>CH₃OH<br>(liquid)                                                                | Ethanol<br>C <sub>2</sub> H <sub>5</sub> OH<br>(liquid)                                     | Gasoline<br>C <sub>4</sub> -C <sub>12</sub><br>(liquid) | No. 2<br>Diesel<br>C <sub>8</sub> -C <sub>25</sub><br>(liquid) | B100<br>Biodiesel<br>C <sub>12</sub> -C <sub>22</sub><br>(liquid) |  |  |  |
| DOT Number                                   | UN 1049<br>UN 1966                         | UN 1971                                                      | UN 1075<br>UN 1978                                      | UN 1230                                                                                      | UN 1170                                                                                     | UN 1203                                                 | UN 1202<br>NA 1993                                             | -                                                                 |  |  |  |
| DOT Hazard Class or Division                 | 2.1<br>flammable<br>gas                    | 2.1<br>flammable<br>gas                                      | 2.1<br>flammable<br>gas                                 | 3.6.1<br>flammable<br>liquid                                                                 | 3<br>flammable<br>liquid                                                                    | 3<br>flammable<br>liquid                                | 3<br>flammable<br>liquid                                       | 3<br>flammable<br>liquid                                          |  |  |  |
| DOT Guide Number                             | 22                                         | 17                                                           | 22                                                      | 28                                                                                           | 26                                                                                          | 27                                                      | 128                                                            | -                                                                 |  |  |  |
| CAS Number                                   | 1333-74-0                                  | 74-82-8                                                      | 74-98-6                                                 | 65-56-1                                                                                      | 64-17-5                                                                                     | 8006-61-9                                               | 68476-34-6                                                     | 67784-80-9                                                        |  |  |  |
| STCC Number                                  | 4905746                                    | 4905755                                                      | 4905781                                                 | 4909230                                                                                      | -                                                                                           | 4908178                                                 | -                                                              | -                                                                 |  |  |  |
| ICC, OSHA, NFPA<br>Liquid Flammability Class | -                                          | -                                                            | -                                                       | IB<br>flammable<br>liquid                                                                    | IB<br>flammable<br>liquid                                                                   | IB<br>flammable<br>liquid                               | 2<br>combustible<br>liquid                                     | 2<br>combustible<br>liquid                                        |  |  |  |
| DOT Packing Group                            | -                                          | -                                                            | -                                                       | PG II                                                                                        | PG II                                                                                       | PG II                                                   | PG III                                                         | PG III                                                            |  |  |  |
| DOT Packaging (non-bulk/bulk)                | 302/302                                    | 302/302                                                      | 304/314                                                 | 202/242                                                                                      | 202/242                                                                                     | 202/242                                                 | 203/242                                                        | 203/242                                                           |  |  |  |
| Types of Shipping Containers                 | Pressurized<br>cylinders<br>&<br>tank cars | Pressurized<br>cylinders                                     | pressurized<br>cylinders,<br>tank trucks,<br>tank cars, | non-bulk: 1-119 gal DOT PG-II performance- oriented containers; bulk: tank cars, tank trucks | non-bulk: 1-119 gal DOT PG-II performance- oriented containers bulk: tank cars, tank trucks | bulk:<br>pipelines,<br>tank cars,<br>tank trucks        | bulk:<br>pipelines,<br>tank cars,<br>tank trucks               | bulk:<br>pipelines,<br>tank cars,<br>tank trucks                  |  |  |  |



FIND US ON SOCIAL MEDIA:









<sup>1.</sup> This three-part Methanol Institute Technical Bulletin was researched and written by Mr. Robert R. Roberts of Roberts & Roberts Risk & Reliability Engineering for Alliance Consulting International, San Diego, California.



## **Physical & Chemical Properties of Selected Fuels -**

### **SECTION 1: GENERAL INFORMATION CONTINUED**

|                            |                | (Section 1:                         | General Inform |                | d)                               |                                 |                                 |                                  |
|----------------------------|----------------|-------------------------------------|----------------|----------------|----------------------------------|---------------------------------|---------------------------------|----------------------------------|
|                            | Hydrogen (2)   | CNG (2)                             | Propane (2)    | Methanol (1)   | Ethanol (1)                      | Gasoline (2)                    | No. 2                           | Biodiesel                        |
| Property                   | H <sub>2</sub> | CH <sub>4</sub> 83-99%;             | C <sub>3</sub> | CH₃OH          | C <sub>2</sub> H <sub>5</sub> OH | C <sub>4</sub> -C <sub>12</sub> | Diesel (2)                      | (2)                              |
|                            | (gas)          | C <sub>2</sub> H <sub>6</sub> 1-13% | (liquid)       | (liquid)       | (liquid)                         | (liquid)                        | C <sub>8</sub> -C <sub>25</sub> | C <sub>12</sub> -C <sub>22</sub> |
|                            |                | (gas)                               |                |                |                                  |                                 | (liquid)                        | (liquid)                         |
| Shipping Container Hazards | rupture,       | rupture,                            | rupture,       | rupture,       | rupture,                         | rupture,                        | rupture,                        | rupture,                         |
|                            | BLEVE:         | BLEVE:                              | BLEVE:         | BLEVE:         | BLEVE:                           | BLEVE:                          | BLEVE:                          | BLEVE:                           |
|                            | containers     | containers may                      | containers     | containers     | containers                       | containers                      | containers                      | containers                       |
|                            | may            | fragment &                          | may            | may            | may fragment                     | may                             | may                             | may                              |
|                            | fragment       | rocket in fire                      | fragment       | fragment       | &                                | fragment                        | fragment                        | fragment                         |
|                            | &              |                                     | &              | &              | rocket in fire                   | &                               | &                               | &                                |
|                            | rocket in fire |                                     | rocket in fire | rocket in fire |                                  | rocket in fire                  | rocket in fire                  | rocket in fire                   |
| Special Fire Hazards       | blue flame     | yellow luminous                     | yellow         | blue flame     | blue flame                       | yellow                          | yellow                          | yellow                           |
|                            | invisible in   | flame visible in                    | luminous       | invisible in   | invisible in                     | luminous                        | luminous                        | luminous                         |
|                            | daylight;      | daylight; flame                     | flame visible  | daylight;      | daylight; flame                  | flame visible                   | flame                           | flame visible                    |
|                            | flame flashes  | flashes back from                   | in daylight;   | flame          | flashes back                     | in daylight;                    | visible in                      | in daylight;                     |
|                            | back from      | ignition source to                  | flame          | flashes back   | from ignition                    | flame                           | daylight;                       | dense black                      |
|                            | ignition       | leak point;                         | flashes back   | from ignition  | source to leak                   | flashes back                    | dense black                     | smoke                            |
|                            | source to      | accumulated vapor                   | from ignition  | source to      | point;                           | from ignition                   | smoke                           |                                  |
|                            | leak point;    | may                                 | source to      | leak point;    | accumulated                      | source to                       |                                 |                                  |
|                            | accumulated    | explode if ignited                  | leak point;    | accumulated    | vapor may                        | leak point;                     |                                 |                                  |
|                            | vapor may      | in confined area or                 | accumulated    | vapor may      | explode if                       | accumulated                     |                                 |                                  |
|                            | explode if     | deflagrate as a                     | vapor may      | explode if     | ignited in                       | vapor may                       |                                 |                                  |
|                            | ignited in     | buoyant radiant                     | explode if     | ignited in     | confined area,                   | explode if                      |                                 |                                  |
|                            | confined or in | fireball in                         | ignited in     | confined       | or deflagrate                    | ignited in                      |                                 |                                  |
|                            | unconfined     | unconfined area                     | confined       | area or        | as a near-                       | confined                        |                                 |                                  |
|                            | area           |                                     | area or        | deflagrate     | neutral-                         | area or                         |                                 |                                  |
|                            |                |                                     | deflagrate     | as a near-     | buoyancy fire                    | deflagrate                      |                                 |                                  |
|                            |                |                                     | as a non-      | neutral-       | ball in                          | as a non-                       |                                 |                                  |
|                            |                |                                     | buoyant        | buoyancy       | unconfined                       | buoyant                         |                                 |                                  |
|                            |                |                                     | radiant fire   | radiant fire   | poorly                           | radiant fire                    |                                 |                                  |
|                            |                |                                     | ball in        | ball in        | ventilated area                  | ball in                         |                                 |                                  |
|                            |                |                                     | unconfined     | unconfined     |                                  | unconfined                      |                                 |                                  |
|                            |                |                                     | area           | poorly         |                                  | area                            |                                 |                                  |
|                            |                |                                     |                | ventilated     |                                  |                                 |                                 |                                  |
|                            |                |                                     |                | area           |                                  |                                 |                                 |                                  |













## **Physical & Chemical Properties of Selected Fuels -**

### **SECTION 1: GENERAL INFORMATION CONTINUED**

|                                   |                | Physical & Che<br>(Section 1:       | emical Propert      |                     |                                  |                         |                                 |                                  |
|-----------------------------------|----------------|-------------------------------------|---------------------|---------------------|----------------------------------|-------------------------|---------------------------------|----------------------------------|
|                                   | Hydrogen (2)   | CNG (2)                             | Propane (2)         | Methanol (1)        | Ethanol (1)                      | Gasoline                | No. 2                           | Biodiesel                        |
| Property                          | H <sub>2</sub> | CH <sub>4</sub> 83-99%;             | C <sub>3</sub>      | CH₃OH               | C <sub>2</sub> H <sub>5</sub> OH | (1,2)                   | Diesel (1,2)                    | (2)                              |
|                                   | (gas)          | C <sub>2</sub> H <sub>6</sub> 1-13% | (compressed         | (liquid)            | (liquid)                         | C4-C <sub>12</sub>      | C <sub>8</sub> -C <sub>25</sub> | C <sub>12</sub> -C <sub>22</sub> |
|                                   |                | (gas)                               | gas liquid)         |                     |                                  | (liquid)                | (liquid)                        | (liquid)                         |
| Other Information                 | H₂ gas         | CNG gas release is                  | liquid floats       | liquid floats       | liquid floats &                  | liquid floats           | liquid floats                   | liquid floats                    |
|                                   | release is     | buoyant and                         | & boils on          | & mixes with        | mixes with                       | on water;               | on water;                       | on water;                        |
|                                   | very buoyant   | invisible, natural                  | water;              | water; near         | water; near                      | high vapor              | low vapor                       | low vapor                        |
|                                   | and invisible  | gas has                             | heavier-            | neutral             | neutral vapor                    | pressure,               | pressure,                       | pressure,                        |
|                                   |                | characteristic odor                 | than-air            | vapor               | buoyancy                         | expected to             | formation of                    | formation of                     |
|                                   |                |                                     | visible vapor       | buoyancy            |                                  | form                    | vapor cloud                     | vapor cloud                      |
|                                   |                |                                     | cloud               |                     |                                  | negative                | not                             | not                              |
|                                   |                |                                     |                     |                     |                                  | buoyancy<br>vapor cloud | expected                        | expected                         |
| Molecular Weight                  | 2.02 (2)       | 16.04 <sup>(2)</sup>                | 44.1 <sup>(2)</sup> | 32.04 (1,2)         | 46.07 (1,2)                      | 100-105 (1,2)           | ~200 (1,2)                      | ~292 (2)                         |
| Chemical Composition              |                |                                     |                     |                     |                                  |                         |                                 |                                  |
| <ul> <li>Carbon (w/w%)</li> </ul> | 0 (2)          | 75 <sup>(2)</sup>                   | 82 (2)              | 37.5 <sup>(2)</sup> | 52.2 <sup>(2)</sup>              | 85-88 <sup>(2)</sup>    | 87 (2)                          | 77 (2)                           |
| Hydrogen (w/w%)                   | 100 (2)        | 25 <sup>(2)</sup>                   | 18 <sup>(2)</sup>   | 12.6 <sup>(2)</sup> | 13.1 <sup>(2)</sup>              | 12-15 <sup>(2)</sup>    | 13 (2)                          | 12 (2)                           |
| Oxygen (w/w%)                     | 0 (2)          | -                                   | -                   | 49.9 (2)            | 34.7 (2)                         | 0                       | 0 (2)                           | 11 (2)                           |













## **Part 1-B: Physical & Chemical Properties** of Selected Fuels -

## **SECTION 2: LIQUID PROPERTIES**

|                                                                 | Part 1-B:                               | Physical & C                                                                               | hemical P                                      | roperties c                                 | of Selected F                                               | uels                                                        |                                                                    |                                                               |  |  |  |
|-----------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------|--|--|--|
| SECTION 2<br>LIQUID PROPERTIES                                  |                                         |                                                                                            |                                                |                                             |                                                             |                                                             |                                                                    |                                                               |  |  |  |
| Property                                                        | Hydrogen (2)<br>H <sub>2</sub><br>(gas) | CNG (2)<br>CH <sub>4</sub> 83-99 <u>%;</u><br>C <sub>2</sub> H <sub>6</sub> 1-13%<br>(gas) | Propane <sup>(2)</sup> C <sub>3</sub> (liquid) |                                             | Ethanol (1)<br>C <sub>2</sub> H <sub>5</sub> OH<br>(liquid) | Gasoline (2)<br>C <sub>4</sub> -C <sub>12</sub><br>(liquid) | No. 2<br>Diesel (2)<br>C <sub>8</sub> -C <sub>25</sub><br>(liquid) | Biodiesel (2)<br>C <sub>12</sub> -C <sub>22</sub><br>(liquid) |  |  |  |
| Freezing Point Temp. (°F)                                       | -435 <sup>(2)</sup>                     | -296 <sup>(2)</sup>                                                                        | -305.8 <sup>(2)</sup>                          | -143.5 <sup>(1,2)</sup>                     | -173.2 <sup>(1,2)</sup>                                     | -40 <sup>(1,2)</sup>                                        | -40 to -30                                                         | 26-66 <sup>(2)</sup>                                          |  |  |  |
| Specific Gravity<br>(@ 60 °F/60 °F)                             | 0.07 (2)                                | 0.424 (2)                                                                                  | 0.508 (2)                                      | 0.796 (1)                                   | 0.794 (1)                                                   | 0.72-0.78 (2)                                               | 0.85 (2)                                                           | 0.88 (2)                                                      |  |  |  |
| Density (lb/gal @ 60 °F)                                        | -                                       | 1.07 (2)                                                                                   | 4.22 (2)                                       | 6.63 (1,2)                                  | 6.61 (1,2)                                                  | 6.0 – 6.5 (1,2)                                             | 6.7 – 7.4 <sup>(1)</sup><br>7.079 <sup>(2)</sup>                   | 7.328 (2)                                                     |  |  |  |
| • @ -4 °F<br>(centipoises / mm²/s)                              | -                                       | -                                                                                          | -                                              | 1.15 <sup>(1)</sup><br>1.345 <sup>(2)</sup> | 2.84 <sup>(1)</sup><br>3.435 <sup>(2)</sup>                 | 0.677 <sup>(1)</sup><br>0.8 - 1.0 <sup>(2)</sup>            | 9.7-17.6 <sup>(1)</sup><br>9.0 - 24.0 <sup>(2)</sup>               | -                                                             |  |  |  |
| @ 68 °F<br>(centipoises / mm²/s)                                | -                                       | -                                                                                          | -                                              | 0.59 <sup>(1)</sup><br>0.74 <sup>(2)</sup>  | 1.19 <sup>(1)</sup><br>1.50 <sup>(2)</sup>                  | 0.37-0.44 <sup>(1)</sup><br>0.5 - 0.6 <sup>(2)</sup>        | 2.6-4.1 <sup>(1)</sup><br>2.8 – 5.0 <sup>(2)</sup>                 | -                                                             |  |  |  |
| @ 104 °F<br>(centipoises / mm²/s)                               |                                         | -                                                                                          | -                                              | -                                           | -                                                           | -                                                           | 1.3 – 4.1 (2)                                                      | 4.0 - 6.0 (2)                                                 |  |  |  |
| Specific Heat<br>(C <sub>p</sub> , Btu/lb-°F)                   | -                                       | -                                                                                          | -                                              | 0.60 (1,2)                                  | 0.57 (1,2)                                                  | 0.48 (1,2)                                                  | 0.43 (1,2)                                                         | -                                                             |  |  |  |
| Thermal Conductivity<br>(Btu/hr-ft-°F)                          | 0.097 (4)                               | 0.17 (4)                                                                                   | 0.075 (6)                                      | 0.12 (3)                                    | 0.099 (3)                                                   | 0.087 (4)                                                   | 0.081-0.087<br>(5,6)                                               | 0.09-0.12 (7)                                                 |  |  |  |
| Coefficient of Thermal<br>Volume Expansion<br>(@ 60 °F & 1 atm) | -                                       | -                                                                                          | -                                              | 0.00067 (1)                                 | 0.00062 (1)                                                 | 0.00067 (1)                                                 | 0.00046 (1)                                                        | -                                                             |  |  |  |
| Electrical Conductivity     Neat or without additives           | -                                       | -                                                                                          | -                                              | 4.4 x 10 <sup>7</sup><br>pS/m (1,26, 32)    | 1.35_x 10 <sup>5</sup><br>pS/m (1,26, 32)                   | 25 pS/m <sup>(7)</sup>                                      | 5 pS/m <sup>(7)</sup>                                              | -                                                             |  |  |  |
| Industrial use     Fuel specification                           | -                                       | -                                                                                          | -                                              | 30 μS/m <sup>(28)</sup><br>< 1000 μS/m      | -<br>< 500 μS/ <u>m</u> ( <sup>27)</sup>                    | -                                                           | < 250<br>pS/m <sup>(28)</sup>                                      | -                                                             |  |  |  |
| Latent Heat of Vaporization                                     |                                         |                                                                                            | 775 (2)                                        | 3.340 (1,2)                                 | 2.378 (1,2)                                                 | ≈900 <sup>(1,2)</sup>                                       | ≈710 (1,2)                                                         |                                                               |  |  |  |
| (Btu/gal @ 60 °F)      (Btu/lb @ 60 °F)                         | 192.1 <sup>(2)</sup>                    | 219 (2)                                                                                    | 193.1 <sup>(2)</sup>                           | 506 <sup>(1,2)</sup>                        | 396 <sup>(1,2)</sup>                                        | ≈900 (1,2)<br>≈150 (1,2)                                    | ≈710 (1,2)<br>≈100 (1,2)                                           | -                                                             |  |  |  |















## **Physical & Chemical Properties of Selected Fuels -**

### **SECTION 2: LIQUID PROPERTIES CONTINUED**

|                                                                                                           |                                                  | Physical & Che                                                                  | mical Propert                     | ies of Selected                                | Fuels                                            |                                                           |                                                           |                                              |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------|--|--|--|--|
| LIQUID PROPERTIES (Section 2: Liquid Properties continued)                                                |                                                  |                                                                                 |                                   |                                                |                                                  |                                                           |                                                           |                                              |  |  |  |  |
|                                                                                                           | Hydrogen (2)                                     | CNG (2)                                                                         | Propane                           | Methanol (1)                                   | Ethanol (1)                                      | Gasoline (2)                                              | No. 2                                                     | Biodiesel (2)                                |  |  |  |  |
| Property                                                                                                  | H <sub>2</sub><br>(gas)                          | CH <sub>4</sub> 83-99 <u>%;</u><br>C <sub>2</sub> H <sub>6</sub> 1-13%<br>(gas) | (2)<br>C <sub>3</sub><br>(liquid) | CH <sub>3</sub> OH<br>(liquid)                 | C <sub>2</sub> H <sub>5</sub> OH<br>(liquid)     | C <sub>4</sub> -C <sub>12</sub><br>(liquid)               | Diesel (2)<br>C <sub>8</sub> -C <sub>25</sub><br>(liquid) | C <sub>12</sub> -C <sub>22</sub><br>(liquid) |  |  |  |  |
| Heating Value (a)                                                                                         |                                                  | (940)                                                                           | (iiquiu)                          |                                                |                                                  |                                                           | (qu.u)                                                    |                                              |  |  |  |  |
| Lower [liquid fuel<br>combusted to water as<br>vapor] (Btu/gal_@ 60 °F) <sup>(1)</sup>                    | -                                                | -                                                                               | 84250 <sup>(2)</sup>              | 56800 <sup>(1)</sup><br>57250 <sup>(2)</sup>   | 76000 <sup>(1)</sup><br>76330 <sup>(2)</sup>     | 109000-<br>119000 <sup>(1)</sup><br>116090 <sup>(2)</sup> | 126000-<br>130800 <sup>(1)</sup><br>128450 <sup>(2)</sup> | -<br>119,550 <sup>(2)</sup>                  |  |  |  |  |
| Lower [liquid fuel combusted to water as                                                                  | -                                                | -                                                                               | -                                 | 8570 <sup>(1)</sup>                            | 11500 <sup>(1)</sup>                             | 18000-<br>19000 <sup>(1)</sup>                            | 18000-<br>19000 <sup>(1)</sup>                            | ,                                            |  |  |  |  |
| vapor] (Btu/lb)                                                                                           | 52217 <sup>(2)</sup>                             | 20263 (2)                                                                       | 19900 <sup>(2)</sup>              | 8637 <sup>(2)</sup>                            | 11585 <sup>(2)</sup>                             | 18676 <sup>(2)</sup>                                      | 18394 <sup>(2)</sup>                                      | 16,131 <sup>(2)</sup>                        |  |  |  |  |
| Higher [liquid fuel<br>combusted to liquid water] (Btu/gal)                                               | -                                                | -                                                                               | 91420 (2)                         | 65200 <sup>(2)</sup>                           | 84530 (2)                                        | 124340 (2)                                                | 137380 (2)                                                | 127960 <sup>(2)</sup>                        |  |  |  |  |
| Higher [liquid fuel<br>combusted to liquid water]                                                         | -                                                | -                                                                               | 04504 (2)                         | 9750 (1)                                       | 12800 (1)                                        | 18800-<br>20400 <sup>(1)</sup>                            | 19200-<br>20000 <sup>(1)</sup>                            | 47000 (3)                                    |  |  |  |  |
| (Btu/lb)                                                                                                  | 59806 <sup>(2)</sup><br>60000 <sup>(30,31)</sup> | 22449 <sup>(2)</sup><br>23000 <sup>(30,31)</sup>                                | 21594 (2)                         | 9837 <sup>(2)</sup><br>9900 <sup>(30,31)</sup> | 12830 <sup>(2)</sup><br>12900 <sup>(30,31)</sup> | 20004 <sup>(2)</sup><br>20000 <sup>(30,31,</sup>          | 19673 <sup>(2)</sup><br>20700 <sup>(30,31)</sup>          | 17266 (2)                                    |  |  |  |  |
| Heat of Combustion [ΔH <sub>c</sub> <sup>0</sup> ]<br>[liquid fuel combusted to<br>liquid water] (Btu/lb) | 61000 (34)                                       | 23000 (30,31)                                                                   | 21500<br>(30,31)<br>21000 (34)    | 9378 (35)                                      | 12000 (34)<br>12764 (36)                         | 34)                                                       | 19300 (34)                                                | ≈18,145<br>(30,31)                           |  |  |  |  |
| Equilibrium Vapor Pressure                                                                                |                                                  |                                                                                 |                                   |                                                |                                                  |                                                           |                                                           |                                              |  |  |  |  |
| <ul> <li>Reid [RVP]<br/>(psi @ 100 °F)</li> </ul>                                                         | -                                                | 2400 (2)                                                                        | 208 (2)                           | 4.6 (1,2)                                      | 2.3 (1,2)                                        | 8 – 15 (1,2)                                              | <0.2 (1,2)                                                | <0.04 (2)                                    |  |  |  |  |
| <ul> <li>True Vapor Pressure [TVP]<br/>(mm Hg @ 68 °F)</li> </ul>                                         | -                                                | -                                                                               | 6257.7 (13)                       | 92 <sup>(10)</sup><br>104 <sup>(11)</sup>      | 43 (9)                                           | 258-775 <sup>(15)</sup><br>(@ 100 °F)                     | 0.4 (14)                                                  | -                                            |  |  |  |  |
| Boiling Pt. Temperature (°F)                                                                              | -423 <sup>(2)</sup>                              | -263.2 – 126.4 <sup>(2)</sup>                                                   | -44 (2)                           | 149 (1,2)                                      | 172 (1,2)                                        | 80 – 437 (2)                                              | 356–644 <sup>(2)</sup>                                    | 599 – 662 <sup>(2)</sup>                     |  |  |  |  |
| Water Solubility @ 70 °F                                                                                  |                                                  |                                                                                 |                                   |                                                |                                                  |                                                           |                                                           |                                              |  |  |  |  |
| Fuel in Water (v/v %)                                                                                     | -                                                | Negligible (2)                                                                  | Negligible<br>(2)                 | 100 (1,2)                                      | 100 (1,2)                                        | Negligible<br>(1,2)                                       | Negligible<br>(1,2)                                       | -                                            |  |  |  |  |
| Water in Fuel (v/v %)                                                                                     | -                                                | -                                                                               | -                                 | 100 (1,2)                                      | 100 (1,2)                                        | Negligible<br>(1,2)                                       | Negligible<br>(1,2)                                       | -                                            |  |  |  |  |

(a) The higher heating value (HHV) and heat of combustion are cited for completeness only. No vehicles currently in use or under development for future use have engines capable of recovering heat of condensation from water of combustion. Use the lower heating value (LHV) for practical comparison between fuels which combust accidentally as a result of a spill or containment failure.















## **Part 1-B: Physical & Chemical Properties** of Selected Fuels -

#### **SECTION 3: VAPOR PROPERTIES**

#### Part 1-B: Physical & Chemical Properties of Selected Fuels

#### **SECTION 3 VAPOR PROPERTIES**

|                                                                    | Hydrogen          | CNG                                                   | Propane     | Methanol                                  | Ethanol                          | Gasoline                              | No. 2              | Biodiesel |
|--------------------------------------------------------------------|-------------------|-------------------------------------------------------|-------------|-------------------------------------------|----------------------------------|---------------------------------------|--------------------|-----------|
| Property                                                           | H <sub>2</sub>    | CH <sub>4</sub> 83-99%; C <sub>2</sub> H <sub>6</sub> | C3          | CH₃OH                                     | C <sub>2</sub> H <sub>5</sub> OH | C4-C12                                | Diesel             | C12-C22   |
|                                                                    | (gas)             | 1-13%<br>(gas)                                        | (liquid)    | (liquid)                                  | (liquid)                         | (liquid)                              | C8-C25<br>(liquid) | (liquid)  |
| Vapor Specific Heat<br>(Btu/lb/°F)                                 | 3.42 (16)         | 0.59 (16)                                             | 0.39 (16)   | 0.38 (18)                                 | 0.45 (19)                        | 0.38 (33) (c)                         | -                  | -         |
| Equilibrium Vapor Pressure                                         |                   |                                                       |             |                                           |                                  |                                       |                    |           |
| • Reid (psi @ 100 °F)                                              | -                 | 2400 <sup>(2)</sup>                                   | 208 (2)     | 4.6 (1,2)                                 | 2.3 (1,2)                        | 8 – 15 (1,2)                          | <0.2 (1,2)         | <0.04 (2) |
| <ul> <li>True Vapor Pressure<br/>(mm Hg @ 68 °F)</li> </ul>        | -                 | -                                                     | 6257.7 (13) | 92 <sup>(10)</sup><br>104 <sup>(11)</sup> | 43 (9)                           | 258-775 <sup>(15)</sup><br>(@ 100 °F) | 0.4 (14)           | -         |
| Vapor Specific Gravity<br>(@ 68 °F & 14.7 psia)                    | 0.0696 (17)       | 0.5537 (17)                                           | 1.5219 (17) | -                                         | -                                | -                                     | -                  | -         |
| Vapor Density (air=1)                                              | 0.07 (24, calc'd) | 0.55-0.69 (25, calc'd)                                | 1.5 (12)    | 1.1 (23)                                  | 1.6 (11)                         | 3 – 4 (15)                            | >3(14)             | -         |
| Vapor Heat of Combustion                                           |                   |                                                       |             |                                           |                                  |                                       |                    |           |
| Lower [gaseous fuel combusted to water as vapor] (Btu/lb @ 60 °F)) | -                 | -                                                     | -           | 9080 (1)                                  | 11900 (1)                        | 19000-19300<br>(1)                    | -                  | -         |













<sup>(</sup>a) True Vapor Pressure is the partial pressure of fuel vapor in air, compared to Reid Vapor Pressure which is the total pressure of fuel vapor, and air contained in the small volume of laboratory test apparatus. Reid Vapor Pressure (RVP) is determined experimentally, and is typically used in reference to hydrocarbon mixtures such as natural gas, Liquid Petroleum Gas (LPG), propane, butane, gasoline, kerosene, diesel, and fuel oil. RVP is expressed as differential pressure in pounds per square inch (psi); true vapor pressure is expressed as absolute pressure in millimeters of mercury (mmHg) or pounds per square inch absolute (psia). One atmosphere of pressure is equivalent to 0.0 psi of differential pressure, and 14.7 psia or 760 mmHg of absolute pressure

<sup>(</sup>b) This value of Cp for an ideal gas at STP (60 oF and 1 atm of pressure) uses the heat capacity of heptane (C7H16) as a surrogate for gasoline vapor.



## **Part 1-B: Physical & Chemical Properties** of Selected Fuels -

#### **SECTION 4: FLAMMABILITY PROPERTIES**

| Part 1-B: Phy | ysıcal & | Chemical | Properties | of Selected | Fuels |
|---------------|----------|----------|------------|-------------|-------|
|               |          |          |            |             |       |

#### **SECTION 4 FLAMMABILITY PROPERTIES**

| D                                                     | Hydrogen (2)        | CNG (2)                         | Propane (2)         | Methanol               | Ethanol (1)                      | Gasoline (2)         | No. 2                    | Biodiesel (2)                    |
|-------------------------------------------------------|---------------------|---------------------------------|---------------------|------------------------|----------------------------------|----------------------|--------------------------|----------------------------------|
| Property                                              | H <sub>2</sub>      | CH <sub>4</sub> 83-99 <u>%;</u> | C <sub>3</sub>      |                        | C <sub>2</sub> H <sub>5</sub> OH | C4-C <sub>12</sub>   | Diesel (2)<br>C8-C25     | C <sub>12</sub> -C <sub>22</sub> |
|                                                       | (gas)               | C₂H <sub>6</sub> 1-13%<br>(gas) | (liquid)            | CH₃OH<br>(liquid)      | (liquid)                         | (liquid)             | (liquid)                 | (liquid)                         |
| Flash Point Temperature                               |                     | (943)                           |                     | (liquiu)               |                                  |                      | (liquiu)                 |                                  |
| Closed Cup (°F)                                       | -                   | -300 <sup>(2)</sup>             | -156 <sup>(1)</sup> | 52 <sup>(1)</sup>      | 55 <sup>(1)</sup>                | -45 <sup>(2)</sup>   | 140 - 176 <sup>(2)</sup> | 212 - 338 (2)                    |
| Open Cup (°F)                                         | -                   | -                               | -                   | -                      | -                                | -                    | -                        | -                                |
| Autoignition Temperature                              | 932 (2)             | 900 – 1170 (2)                  | 842 (2)             | 867 (1,2)              | 793 (1,2)                        | 495 (1,2)            | ≈600 <sup>(1,2)</sup>    | -                                |
| Flammability Limits                                   | 932 (-)             | 900 - 1170 (-)                  | 042 (-)             |                        |                                  |                      | ~000 (11=7               |                                  |
| Lower (v/v %)                                         | 4.1 (2)             | 5.3 (2)                         | 2.2 (2)             | 7.3 (1,2)              | 4.3 (1,2)                        | 1.4 (1,2)            | 1.0 (1,2)                | -                                |
| • Upper (v/v%)                                        | 74 (2)              | 15.0 <sup>(2)</sup>             | 9.5 (2)             | 36.0 (1,2)             | 19.0 (1,2)                       | 7.6 (1,2)            | 6.0 (1,2)                | -                                |
| Flammability Range                                    | 69.9 (calc by diff) | 9.7 (calc by diff)              | 7.3 (calc by diff)  | 28.7<br>(calc by diff) | 14.7 (calc by diff)              | 6.2 (calc by diff)   | 5 (calc by diff)         | -                                |
| Stoichiometric air/fuel ratio                         | 34.3 (2)            | 17.2 <sup>(2)</sup>             | 15.7 <sup>(2)</sup> | 6.45 (1,2)             | 9.00 (1,2)                       | 14.7 (1,2)           | 14.7 (1,2)               | 13.8 <sup>(2)</sup>              |
| Fuel in Vaporized<br>Stoichiometric Mixture<br>(v/v%) | -                   | -                               | -                   | 12.3 (2)               | 6.5 (2)                          | 2.0 (2)              | -                        | -                                |
| Stoichiometric Flame Speed (ft/s)                     | 10.63 -14.44        | 1.48 (20)                       | 1.48 (20)           | 1.41 (20)              | -                                | 1.12 (20)            | -                        | -                                |
| Minimum Ignition Energy (mJ)                          | 0.017 (20)          | 0.30 (20)                       | 0.26 (20)           | 0.14 (20)              | -                                | 0.29 (20)            | 0.23 (21)                | -                                |
| Adiabatic Flame<br>Temperature<br>(°F)                | 3807 (21)           | 3542 <sup>(21)</sup>            | 3610 (21)           | 3470 (21)              | 3281 (21)                        | 3525 <sup>(21)</sup> | -                        | -                                |
| Flame Temperature                                     | 3722 (20)           | 3542 <sup>(20)</sup>            | 3497 (20)           | 3,398 (20)             | 3,488 (20)                       | 3,686 (20)           | -                        | -                                |
| Mass Burning Rate<br>(lb/ft²)                         | -                   | -                               | -                   | 0.083(29)              | -                                | 0.27(29)             | 0.22(29)                 | -                                |













#### **SOURCES OF INFORMATION**

- 1. Rene M. Tshiteya, Ph.D., Ezio N. Vermiglio, and Steven Tice: "Properties of Alcohol Transportation Fuels, Alcohol Fuels Reference Work #1, Prepared by Fuels and Transportation Division, Meridian Corporation, 4300 King Street, Alexandria, VA 22302; Prepared for Biofuels Systems Division, Office of Alternative Fuels, U.S. Department of Energy, July 1991.
- 2. Internet web page as of March 2011:: http://eerc.ra.utk.edu/etcfc/docs/altfueltable.pdf
- 3.Internet web page as of March 2011: http://www.engineeringtoolbox.com/thermal-conductivity-liquids-d\_1260.html
- 4.Internet web page as of March 2011: http://www.engineeringtoolbox.com/thermal-conductivity-d\_429.html
- 5.Internet web page as of March 2011: http://eng-tips.com/viewthread.cfm?qid=245443&page=5
- 6.Internet web page as of March 2011: http://webserver.dmt.upm.es/~isidoro/dat1/eLIQ.htm
- 7. Johnathan P. McCrady, Valerie L. Stringer, Alan C. Hansen, Chia-fon F. Lee: "Computer Analysis of Biodiesel Combustion in a Low Temperature Combustion Engine using Well-Defined Fuel Properties," © 2007 SAE International, 07PFL-655, University of Illinois at Urbana-Champaign
- 8. Internet web page as of March 2011: http://www3.ntsb.gov/recs/letters/1987/M87\_23\_25.pdf
- 9. Internet web page as of March 2011: http://www.distill.com/materialsafety/msds-usa.html
- 10. Methanex: "Technical Information & Safe Handling Guide for Methanol," version 3.0, September 2006
- 11. Internet web page as of March 2011: http://en.wikipedia.org/wiki/Methanol (data page)#Material Safety Data Sheet
- 12. Internet web page as of March 2011: http://www.campora.com/msds.htm
- 13. Internet web page as of March 2011: http://www.engineeringtoolbox.com/propane-d\_1423.html
- 14. Internet web page as of March 2011: http://www.petrocard.com/products/MSDS-ULS.pdf
- 15. Internet web page as of March 2011: http://www.albina.com/fuel/chevronrugasmsds.htm
- 16. Internet web page as of March 2011: http://www.engineeringtoolbox.com/hydrogen-d 976.html
- 17. Internet web page as of March 2011: http://www.engineeringtoolbox.com/specific-gravities-gases-d\_334.html
- 18. Internet web page as of March 2011: http://www.engineeringtoolbox.com/methanol-properties-d 1209.html
- 19. Internet web page as of March 2011: http://answers.yahoo.com/question/index?qid=20080403121038AAnMf9y
- 20.Internet web page as of March 2011: http://www.faqs.org/faqs/autos/gasoline-faq/part4/preamble.html
- 21. Charles E. Baukal, and Robert E. Schwartz: The John Zink Combustion Handbook, @ John Zink Company, LLC, 2001, CRC Press LLC, p.
- 22. Internet web page as of March 2011: http://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr1805/ch3-6.pdf
- 23. Internet web page as of March 2011: http://oehha.ca.gov/oublic\_info/pdf/TSD&20Methanol%20Meth%20Labs%2010'8'03.pdf
- 24. Internet web page as of March 2011: http://wiki.answers.com/Q/What\_is\_the\_density\_of\_hydrogen\_gas\_using\_the\_ideal\_gas\_law
- 25. Internet web page as of March 2011: http://www.engineeringtoolbox.com/gas-density-d\_158.html
- 26.Internet web page as of March 2011: http://www.scribd.com/doc/22568364/Liq-Handbook-51-6009-Conductance-Data-for-Commonly-Used-Chemicals-199408
- 27. Internet web page as of March 2011: http://www.itecref.com/pdf/fuel alcohol specifications Comparison.pdf
- page 28.Internet web as of March 2011: http://baltchemtrade.com/site/files/metanol-en.pdf; http://nazot.ru/download/product/product\_337.pdf
- 29. Internet web page as of March 2011: http://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr1805/ch3-6.pdf
- 30.Internet web page as of March 2011: http://en.wikipedia.org/wiki/Heat\_of\_combustion Heat\_of\_combustion\_tables
- 31. Internet web page as of March 2011: http://www.gexcon.com//handbook/GEXHBchap4.htm
- 32. Internet web page as of March 2011: http://www.pccmorava-chem.cz/ttw/mch.nsf/id/EN Methanol
- 33. William D. McCain, Jr.: The Properties of Petroleum Fluids, 2nd edition, © 1990 by PennWell Publishing Company, p. 492-493, ISBN 0
- 34. Internet web page as of March 2011: http://www.enotes.com/topic/Heat of combustion#Heat of combustion tables
- 35. Internet web page as of March 2011: http://webbook.nist.gov/cgi/cbook.cgi?Name=methanol&Units=SI&cTC=on
- 36. Internet web page as of March 2011: http://webbook.nist.gov/cgi/cbook.cgi?Name=ethanol&Units=SI&cTC=on











