Small scale Methanol Plants a chance for re-industrialisation

International Methanol Conference
8-10 May 2017
Content

- Introduction
- Industrial Sectors
- Methanol
- Political Framework
- Technical Feasibility
- Commercial Aspects
- Realisation

\[\text{CO} + \text{CH}_3\text{OH} \rightarrow \text{H}_2\text{O} + \text{CH}_4 \]
Introduction
Company Profile

Our Expertise

- Company for consultant, client engineering and project management since 1990
- Since 2012 continuous normative development in the field of CO₂
- Several speeches and expert consultations at international conferences and for the EU Commission
- Market development for small-scale methanol plants including IP
- Various project developments for E-Methanol plants up to 100,000 t/y
- Initiator of full service package (EPCM) of small-scale methanol plants including engineering, licencing and execution
References of BSE Methanol

- 2014 Feasibility study MeOH from Bioethanol CO₂ 50 MW
- 2015-17 Start Bio-M: Intermittent MeOH production from green CO₂, Germany
- 2015/16 Business case study chemical energy storages via MeOH
- 2016 Pre-Engineering MeOH from flue gas CO₂ WtE 5 MW (Execution 2019)
- 2016 Pre-Engineering MeOH from flue gas CO₂ WtE 10 MW (Execution 2018)
- 2016 Strategy development of 2 biomass power plant for integrated chemical CO₂ utilisation 100 MW (Execution 2020/2024)

Start of the first project estimated 2018.
Methanol Platform
Development of Common Synergies

concepts for mobile and stationary applications
Motivation

- Decentralisation
- Reduction of investment risk
- Market-oriented production
- Fast reaction to flexible markets
- Development of new markets

Challenges

- Self-sufficient raw materials supply
- Flexible markets
- Diversification of product range
- Carbon recycling

Methods

- Modularisation
- Scalability
- Compatibility
- Process integration

Aims

- Competitive
- Stable
- Flexible
Megatrends Post-2020

Low-Carbon Economy 2050
- Cost-efficient reduction of yearly GHG emissions 40% (by 2030), 60% (by 2040), 80% (by 2050)
- Power sector can almost totally eliminate CO₂ emissions; Industry must achieve 80%

Circular Economy
- More Carbon Recycling
- A binding landfill target to reduce landfill to maximum of 10% of municipal waste by 2030
- A ban on landfilling of separately collected waste
- Promotion of economic instruments to discourage landfilling
- Concrete measures to promote re-use and stimulate industrial symbiosis - turning one industry's by-product into another industry's raw material (C-Recycling)

Resource Efficiency
- Turning waste into a resource
- Ensuring efficient mobility

Reindustrialisation
- Increasing the manufacturing sectors’ share in EU's GDP from the current 16% to 20% in 2020.
Conclusion: Megatrends

- Wind and photovoltaic electricity is generated regardless of the demand
- Power becomes temporary an unused resource
- Carbon dioxide is a available carbon source

Options to use power when available in:

- Battery
- Power-to-Heat
- Power-to-Fuel
- Power-to-Gas
- Power-to-Chem

- Power Storage
- Power Sink
- Transport Sectoral Coupling
- Power Storage for Repowering
- Re-Industrialisation
Methanol as Energy Storage

Methanol is a long-term chemical energy storage.

- Energy density: 4.4 kWh/l
 5.5 kWh/kg
- Boiling point: \(~ 65 °C\)
- Ignition Temp: 455 °C
- Aggregate state: liquid
Methanol

Base Chemical and Liquid Energy Storage

Methanol is the simplest representative of alcohols, mostly produced organic chemical.

Volumetric density of 4.4 kWh/l is almost 6 times higher than that of hydrogen.

Storage of 4.800 kWh in 1 m³

*Calculation without conversion losses based on the heating values.
Upgrading Electricity to Fuel
Chemical Energy Storage

Production of E-Methanol – the technical photosynthesis!

Fuels are made out of water and air.
Main Statements

Excerpts from Experts

“We believe that the technology for the production of methanol from biogenic CO\textsubscript{2} streams is a resilient technology for the production of fuels and the storage of electrical power in the existing infrastructure.”

KIC Innoenergy

“In 2030 only e-mobility and synthetic fuels should be allowed.”

BMUB

“Methanol from CO\textsubscript{2} will take an important role as needed bulk chemical and global commodity.”

nova-Institut GmbH

“Sexy Fuels”

EU Commission (Ms Donnelly, DG Energy)

“The company’s statement to the 37th BImSchV we can support (...) as well as referenced solutions.”

Wirtschaftsrat CDU e.V.

“The utilization of this CO\textsubscript{2} finally results into an inversion of the organic chemistry that will be based on C-1 building blocks.”

BioEconomy Cluster
Market Abstract

CO₂-Sources
- Flue gas incineration
- Biogas purification
- Ethanol fermentation
- Steel mills
- Lime, cement industry
- Air capture

Excess Power Sources
- Must run plants (waste incineration)
- Biomass power plants
- Fossil power plants
- Grid stabilisation
- Wind and PV

Excess Hydrogen Sources
- Reforming process
- Chloralkali process

CO₂ Emission Imports
- Natural Gas
- Petrochemical liquids
- Bulk chemicals used in transport
Constellation Power-to-Fuel Plants

EU-strategy: power based fuels, decarbonisation, resource efficiency, re-industrialisation, securing power supply
Methanol – Solution, Market
Power-to-fuel Options
Methanol as Preferred Chemical Energy Storage

Methanol has the **highest value** after the conversion of electricity with the best upgrading possibilities.
Usage of Methanol by End-Use

High Fuel Sector Usage

- Already 28% of Methanol are used in the fuel sector
- Highest potential in direct blending of fuel and further processing to MTBE

Potential fuel usage for E-Methanol

- Formaldehyde: 27%
- MTO: 18%
- Gasoline Blending: 9%
- Acetic Acid: 9%
- DME: 8%
- MTBE / TAME: 8%
- Others: 7%
- Solvents: 4%
- Methylamines: 3%
- Biodiesel: 3%
- Chloromethanes: 2%
- MMA: 2%

Source: IHS (2015)
Power-to-Fuel vs. Power-to-E-Mobility

Chemical Power Storage vs. E-Mobility

1 cubic meter of liquefied power (E-Methanol) compares with 222 BMW i3 (full electric car)!*

1 m³ Methanol 4.4 kWh/l

*Storage capacity of one BMW i3 battery is 21,6 kWh.
Advantages E-Methanol

Value Chain

- Contribution to the National Climate Protection by requiring blending
- Cascade usage of CO₂
- Utilisation of Methanol in the fuel sector:
 - Blending M3 without any adjustments possible
 - Methyl-tert-butylether (MTBE, antiknock agent)
 - Biodiesel (Production)
 - Dimethylether
- Utilisation without adjustments of the infrastructure possible
- Substituting biofuels from food
Market Volume
Methanol as Fuel

Large Methanol Potential in transport sector (EU 2015):

<table>
<thead>
<tr>
<th>Typ</th>
<th>DE</th>
<th>EU</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTBE</td>
<td>1.20</td>
<td>5.50</td>
<td>Mio. t/y</td>
</tr>
<tr>
<td>Biodiesel</td>
<td>0.25</td>
<td>1.10</td>
<td>Mio. t/y</td>
</tr>
<tr>
<td>Direct blending (potential)</td>
<td>0.55</td>
<td>4.20</td>
<td>Mio. t/y</td>
</tr>
</tbody>
</table>

Demand of Advanced Fuels (EU target 2020):
- 1.4 Mio. t/y Methanol in gasoline to achieve the 0.5% sub target

Methanol and Small-Scale Methanol Plants are an increasing market!
Legal Framework
European Legal Framework
Effective Validity of ETS, RED/FQD

ETS - EU Emission Trading System

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase I</td>
<td>Phase II</td>
<td>Phase III</td>
<td>???</td>
</tr>
</tbody>
</table>

RED/FQD - Renewable Energy and Fuel Regulations

<table>
<thead>
<tr>
<th>2009 - 2017</th>
<th>2017 - 2020</th>
<th>2021 - 2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>RED/FQD</td>
<td>Amended RED/FQD</td>
<td>RED II</td>
</tr>
</tbody>
</table>

ILUC DIR 2015
Proposal RED II
Technical Feasibility
Solution is Methanol Synthesis

Production of Advanced Fuels

Catalytic, exothermic reaction of CO$_2$ and H$_2$ to Methanol and Water

\[
\begin{align*}
CO_2 + 3H_2 & \leftrightarrow CH_3OH + H_2O & \Delta H^O_R &= -49.6 \text{ kJ/mol} \\
CO_2 + H_2 & \leftrightarrow CO + H_2 & \Delta H^O_R &= +41.2 \text{ kJ/mol} \\
CO + 2H_2 & \leftrightarrow CH_3OH & \Delta H^O_R &= -90.8 \text{ kJ/mol}
\end{align*}
\]
Process Concept Off-Grid Solution

Materilisation

Existing units:
- CO$_2$-source flue gas
- Power generator
- Thermal driven process
- Grid connection

Expansion units:
- CO$_2$-separation / amine gas treatment
- Alkaline electrolysis
- Methanol synthesis
- Methanol distillation
CO₂-Separation

Step 1b – Process Flowsheet

Heat for further process: 140°C
Energy consumption: low pressure steam

Flexibility range: 50 – 100 %
Electrolyser
Step 1a – 10 MW Electrolysis

2,080 Nm³/h \(\rightarrow \) \(\mathrm{H}_2 \)
1,040 Nm³/h \(\rightarrow \) \(\mathrm{O}_2 \)

Power 0.4 A/cm²

Theoretic energy and mass balance
Heat for further process: 80°C
Energy consumption: 4.8 kWh/Nm³ \(\mathrm{H}_2 \)

Flexibility range: 10 – 120 %

Alkaline Electrolysis 2 MW
State of the Art
Methanol Synthesis

Step 2 – Methanol Synthesis

Catalytic exothermic reaction of CO₂ (1.36 t/h) and H₂ (0.19 t/h) to raw methanol (1.55 t/h)

Excess steam to distillation
Raw methanol: 64% MeOH and 36% H₂O

Flexibility range: 10 – 120 %
Bio-M
Production of E-Methanol Under Fluctuating Conditions

Objectives:

- Development of a new flexible and sustainable process for producing methanol from biogenic carbon dioxide and hydrogen
- Demonstrate technical feasibility and industrial relevance
- Evaluation of stress resistant, stable catalyst which comply with the needs of a dynamic energy market

Project duration:

- 2015-10 – 2017-06

In cooperation with:
Methanol Purification

Step 2b – Methanol Distillation

Topping plus two stage refining distillation
Methanol according IMPAC specification (> 99.85 %w/w)

Flexibility range: 70 – 120 %
Commercial Aspects
Power-to-fuel Options

Methanol as Preferred Chemical Energy Storage

Methanol has the highest value after the conversion of electricity with the best upgrading possibilities.
Key Performance Indicators

Overview Main Products

<table>
<thead>
<tr>
<th>Categories</th>
<th>Unit</th>
<th>10 MW Electrolysis</th>
<th>20 MW Electrolysis</th>
<th>80 MW Electrolysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methanol</td>
<td>t/y</td>
<td>7,440</td>
<td>14,880</td>
<td>59,520</td>
</tr>
<tr>
<td>Water</td>
<td>t/y</td>
<td>4,320</td>
<td>8,640</td>
<td>34,560</td>
</tr>
<tr>
<td>Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Demand</td>
<td>MWh/a</td>
<td>80,000</td>
<td>160,000</td>
<td>640,000</td>
</tr>
<tr>
<td>CO₂ Demand</td>
<td>t/y</td>
<td>10,880</td>
<td>21,760</td>
<td>87,040</td>
</tr>
<tr>
<td>Water Demand</td>
<td>t/y</td>
<td>22,800</td>
<td>45,600</td>
<td>182,400</td>
</tr>
<tr>
<td>Catalyst Demand</td>
<td>t</td>
<td>3.1</td>
<td>6.2</td>
<td>24.8</td>
</tr>
<tr>
<td>Required Area</td>
<td>m²</td>
<td>1,600</td>
<td>2,900</td>
<td>9,500</td>
</tr>
<tr>
<td>Technical Depreciation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical lifetime</td>
<td>a</td>
<td></td>
<td></td>
<td>25</td>
</tr>
</tbody>
</table>

Total Efficiency >65% (depending on energy recovery)

based on 8,000 full load hours
Value of Used Power

Power Market Operated

- Revenue regenerative Methanol
- Production time
- Revenue fossil Methanol

1h-Spot average month

Flexible market
Fuels
Energy
Stable growth market

Power price vs. operating hours
Offtake Concept

- Production capacities can not be planned (availability from 4,000 h to 8,000 h)
- Different counting for advanced fuels in the EU member states
- Need of pooling the produced capacities in a trade house to enter the premium markets
- Distribution of income according to the individual production

Pooling as best value market
Realisation
Full Service Small-Scale Methanol Plants

Execution

- **CO₂-Separation**
 - Aker Solutions

- **Electrolysis**
 - McPhy

- **Power Supply Mode**
 - WEMAG

- **Methanol Offtake**
 - nordic green

- **Methanol Synthesis**
 - InfraServ KNAPSAck

- **Methanol Distillation**
 - Sulzer

- **Project Finance**
 - Subsidies, Grants, etc.

First rollout of a 10 MW plant in 2019/20
Engineering Procurement Construction (M)
Small-Scale Methanol Plants

Company
- Founded in 1990
- Engineering and process provider

Competence/Performances
- Project coordination
- Project development
- Basic, detail engineering
- Plant integration
- Exclusive BASF - Catalyst supplier
- Licencing

References

Germany

www.bse-engineering.de
Catalyst Producer

Exclusive Supply for Small-Scale Methanol Plants

Company
- Founded 1865
- Company listed in the DAX
- Turnover 70 bill. € in 2015

Competence/Performances
- World leading company in catalyst supply

References
- First patent for methanol synthesis in 1913
- First plant for methanol synthesis in 1923
- Exclusive JDA and supply agreement for small-scale methanol plants globally with bse

BASF
We create chemistry

Catalyst

Germany

www.basf.com
CO₂-Separation
Exclusive Partner of BSE

Company
- 20 years of CCUS know-how, 30 experts and 300 employees engaged in CCUS projects
- Core competence: Cost-efficient carbon capture technology
- Invested ~ 45 Mio. € in capture technology
- Technologies for fossil fuel power, cement and WtE plants

Competence
- Flue gas treatment
- CO₂ separation with improved amine solvents
- Design, construction, start-up and operation of amine plants

References
- Sleipner CO₂ platform (1,000 CO₂ kt/a, Statoil 1996)
- CO₂ capture plant Mongstad, TCM (80 CO₂ kt/a, 2012)
- Mobile Test Unit – MTU (own and operate, 2008)
- Winner of UK CCS Competition, Longannet (2011)
Methanol Synthesis
Exclusive Partner of BSE

Company
- Experience since 1997
- Various industrial and chemical services

Competence/Performances
- Plant optimisation
- Process development
- Conceptual design
- Basic, detail engineering
- Plant construction

References

InfraServ KNAPSACK
Holistic engineering

Germany
840 employees

www.infraserv-knapsack.de

www.infraserv-knapsack.de
Methanol Distillation

Exclusive Partner of BSE Under Negotiation

Company
- Providing process solutions since 1940
- Global sales and manufacturing network
- Broad Know How, numerous patents

Competence/Performances
- Most complete portfolio of distillation components
- The leading expert and solutions provider for continuous, single-/multi-stage distillation
- Taylor made design of highly efficient separation process
- Guaranteed performance

References
- > 100,000 columns are operating in over 500 different applications

SULZER
Chemtech – process technology

Switzerland
15,200 employees

www.sulzer.com
Performance of the Consortium

Steps of Execution

- Technical, economical, legal project definition
- Technical integration
- Energy and mass balance
- Operating concept
- CAPEX/OPEX
- Grant options

Project Management
- Basic engineering
- Detail Engineering
- Schedule & Cost Control
- Licencing
- Start-up

- Turn key supply
- Unit supply
- Core equipment supply
- Catalyst supply
- Performance test

- Maintenance
- Catalyst Refilling
- Power Supply mode
- Offtake

Concept Engineering Construction Operation

Individual Project Contract