The 2-stroke ME-LGIM

The dual fuel engine designed for operation on Methanol

René Sejer Laursen
Promotion Manager, ME-GI/LGI
E-mail: ReneS.Laursen@man.eu
CSSC-MES Diesel Co. Celebration
Manufacturing 10 million MAN Diesel & Turbo designed BHP
Dual fuel engine reference list

Orders including options

<table>
<thead>
<tr>
<th>No. of engines</th>
<th>Type</th>
<th>Type</th>
<th>Mk.</th>
<th>Gensets</th>
<th>Fuel</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>S</td>
<td>90</td>
<td>ME-C-GI</td>
<td>10.5</td>
<td>Methane</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>90</td>
<td>ME-C-GI</td>
<td>10.5</td>
<td>Methane</td>
</tr>
<tr>
<td>128</td>
<td>G</td>
<td>70</td>
<td>ME-C-GI</td>
<td>9.5 , 9.2</td>
<td>Methane</td>
</tr>
<tr>
<td>5</td>
<td>L</td>
<td>70</td>
<td>ME-C-GI</td>
<td>8.2</td>
<td>Methane</td>
</tr>
<tr>
<td>4</td>
<td>S</td>
<td>70</td>
<td>ME-C-GI</td>
<td>8.2, 7</td>
<td>Methane</td>
</tr>
<tr>
<td>6</td>
<td>S</td>
<td>50</td>
<td>ME-C-GI</td>
<td>8.2</td>
<td>Methane</td>
</tr>
<tr>
<td>6</td>
<td>G</td>
<td>50</td>
<td>ME-C-GI</td>
<td>9.5</td>
<td>Methane</td>
</tr>
<tr>
<td>4</td>
<td>G</td>
<td>45</td>
<td>ME-C-GI</td>
<td>9.5</td>
<td>Methane</td>
</tr>
<tr>
<td>6</td>
<td>G</td>
<td>50</td>
<td>ME-B-LGIM</td>
<td>9.5</td>
<td>Methanol</td>
</tr>
<tr>
<td>3</td>
<td>S</td>
<td>50</td>
<td>ME-B-LGIM</td>
<td>9.3</td>
<td>Methanol</td>
</tr>
<tr>
<td>5</td>
<td>G</td>
<td>60</td>
<td>ME-C-GIE</td>
<td>9.5</td>
<td>Ethane</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>50</td>
<td>ME-C-GIE</td>
<td>9.5</td>
<td>Ethane</td>
</tr>
</tbody>
</table>

Total dual fuel engines including options

177 engines

Total power main engine

3.19 GW

Total dual fuel 2-Stroke in service

28 engines
Korea and Japan Welcome the First Methanol-Fueled, Ocean-Going Vessels

Starting on April 18, Waterfront Shipping Company Ltd. (WFS), Marinvest/Skagerack Invest (Marinvest), Westfal-Larsen Management (WL), and Mitsui O.S.K. Lines, Ltd. (MOL) attended a series of traditional ship-naming ceremonies and took delivery of the first Korean- and Japanese-built, methanol-fueled ocean tankers – the ‘Lindanger’, ‘Mari Jone’ and ‘Taranaki Sun’.

All 7 Methanol-fuelled vessels entered service in 2016

Today more than 7500 operations hours on methanol
ME-GI and ME-LGI Gas Technologies
ME-LGI Methanol - Development Milestones

LGI demonstration event at MDT 4T50ME-X
Test at MDT 4T50ME-X
Test at MES 4S50ME-T9
Test at MES 7S50ME-B9.3
Celebration at MES
Test at HHI 7G50ME-B9.3
TAT at MES 4S50ME-T9
Sea trial MNS Taranaki Sun
Sea trial HMD Lindanger
Sea trial HMD Mari Jone
Sea trial HMD Leikanger
Sea trial M752

2015 2016 2017
The ME-GI is derived from the industry’s standard MC and ME engine.

- **Diesel cycle** high fuel efficiency ~50% versus much lower for other engine types.
- High fuel flexibility
- High **reliability** – same as fuel engines.
- **No derating** because of **knocking** danger.
- **Negligible fuel slip.**
- A robust gas combustion – unchanged load response – unaffected by ambient condition
ME-LGI Combustion Principle

- The ME-LGI engine is a dual fuel engine
- Diesel combustion process →
- High efficiency

Main injection

Pilot injection
Dual Fuel Operation Keep the Power

Fuel-oil-only mode

Fuel

100% load

Maximum-gas-amount mode

Fuel

Gas

100% load

Automatic switch-over between gas and pilot oil or fuel injection at 10% load

% Gas

% Pilot

5%
ME-LGI-S System Overview

- Air supply 7 bar
- Fuel valve train
- Liquid fuel gas
- Liquid fuel gas service tank
- Vent
- Outside engine hall
- Inside engine hall
- Cooling oil system
- Purge return system
- Supply pressure and temperature according to specification
- Liquid fuel gas tank
- Standard piping
- Double-walled piping, ventilated
- Double-walled piping

Liquid Fuel Gas Supply System
ME-GI and ME-LGI Gas Technologies

ME-LGI G50 and S50 Methanol Engines: Service Experience

Service status:
- 4 vessels from HHI in service
- 1 out of 3 vessel from MES in service
- Approx. 7500 service hours
- First start up of MeOH operation was carried out by the crew alone

Challenges:
- Plunger in good condition after shop-test
- Cut-off shaft in good condition after shop-test
- Atomiser in good condition after shop-test
- Broken springs in fuel diesel fuel valves
- Unstable HC sensors fixed
- Several SW bugs have disturbed operation
To reach Tier-III NOx emissions:

- Tested at Mitsui test engine with compromised performance setup
- Two separate technologies:
 - EGR
 - Water mixing in methanol

EGR

- The same EGR system and settings were used for diesel (DI) and methanol (LGI)
- Duration: 4 days September 2016

Methanol + water

- Water was mixed into the methanol in order to cool the flame, which should reduce the thermal NOx production
- Duration: 2 days September 2016

<table>
<thead>
<tr>
<th>Engine</th>
<th>4S50ME-T-9.5-LGI</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCR rating</td>
<td>7120kW @ 117 rpm</td>
</tr>
<tr>
<td>MIP</td>
<td>21 bar</td>
</tr>
<tr>
<td>Bore</td>
<td>0.5 m</td>
</tr>
<tr>
<td>Stroke</td>
<td>2.214 m</td>
</tr>
<tr>
<td>Cylinders</td>
<td>4</td>
</tr>
<tr>
<td>V_{comp}</td>
<td>20 liter /cyl.</td>
</tr>
<tr>
<td>Fuels</td>
<td>Diesel and methanol</td>
</tr>
</tbody>
</table>
ME-GI and ME-LGI Gas Technologies
ME-LGI: Performance Results: EGR - SFOC and NOx

<table>
<thead>
<tr>
<th>Tests</th>
<th>#</th>
<th>NOx ISO</th>
<th>ΔSFOC ISO (relative to LGI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI</td>
<td>T60</td>
<td>14,0</td>
<td>+10,8</td>
</tr>
<tr>
<td>DI+EGR</td>
<td>T63”</td>
<td>6,2</td>
<td>+14,1</td>
</tr>
<tr>
<td>LGI</td>
<td>T62</td>
<td>7,8</td>
<td>0</td>
</tr>
<tr>
<td>LGI+EGR</td>
<td>T63’</td>
<td>2,7</td>
<td>+1,8</td>
</tr>
</tbody>
</table>

Tests and performance results for EGR - SFOC and NOx.
NOx decreases almost linearly with water content.

- NOx emissions are close to 2 g/kWh at 50 and 75% load.
- NOx emissions at 25% load is at the “not to exceed limit” for Tier-III, but can be lowered further.
- 100% load with high water content not possible due to system limitations.
The 3rd option tier III: Water in Methanol is under investigation.

Tier III can be met with a mixture of 40% water and 60% methanol
Long term effect on liner and piston ring wear needs to be investigated
All data provided in this document is non-binding. This data serves informational purposes only and is especially not guaranteed in any way. Depending on the subsequent specific individual projects, the relevant data may be subject to changes and will be assessed and determined individually for each project. This will depend on the particular characteristics of each individual project, especially specific site and operational conditions.