CO2 POTENTIAL IN THE METHANOL BUSINESS
Hans Vander Velpen, SABIC Corporate Sustainability Department

December 2, 2015
WELCOME TO

SABIC’S JOURNEY

SABIC’S JOURNEY ON SUSTAINABILITY
SABIC’S APPROACH TO CO2 MITIGATION
CO2 SAVING POTENTIAL OF METHANOL
CHEMISTRY THAT MATTERS™
SABIC IS ROOTED INTO SUSTAINABILITY

Jubail City now

60+ MMT valuable materials
40,000 jobs
$ 50 B revenue in 2014
$ 160 B total assets
SUSTAINABILITY IS A KEY FOUNDATION OF SABIC 2025 STRATEGY

Global leadership in chemicals

- Financial
- Market
- Feedstock
- Technology

LEVERAGING KSA ADVANTAGE
GLOBALIZATION
TOP QUARTILE PERFORMANCE

SUSTAINABILITY

ENVIRONMENT
Resource
Effective

ECONOMIC
Cost
Efficient

SOCIAL
Safe &
secure

ORGANIZATION AND CULTURE
TALENT DEVELOPMENT
“Sustainability is fundamental to our business strategy and we are continually looking for new ways to integrate it into our business.”

YOUSEF AL-BENYAN
VICE CHAIRMAN AND
CHIEF EXECUTIVE OFFICER

Sustainability value:
- provides solutions that enable our customers meet sustainability goals
- Identify trends and captures opportunities
- Increase business resilience
SABIC’S OPERATIONAL SUSTAINABILITY PERFORMANCE AND 2025 ENERGY INTENSITY TARGET

Operational KPI Reductions since Base Year 2010

- ▼ 5% GHG EMISSIONS INTENSITY
- ▼ 7% ENERGY INTENSITY
- ▼ 7% WATER INTENSITY
- ▼ 18% MATERIAL LOSS INTENSITY

2,700,000 MT
TOTAL CURRENT CO₂ UTILIZATION

49%
REDUCTION IN FLARING EMISSIONS

2025 Energy Intensity Target

- 6.7% in 2014
- 13.4% in 2018
- 25% in 2025

1.67% per year
SABIC’S APPROACH TO CO2 MITIGATION

- SABIC’S JOURNEY ON SUSTAINABILITY
- SABIC’S APPROACH TO CO2 MITIGATION
- CO2 SAVING POTENTIAL OF METHANOL
- CHEMISTRY THAT MATTERS™
OUR APPROACH TOWARDS CO$_2$ EMISSION

- Low Carbon Technology
- CO$_2$ Utilization
- CO$_2$ Avoidance through Innovative Solutions
- Operational Efficiency
CO₂ REACTION PATHWAYS FOR CHEMICAL INDUSTRY

- Methanol
- Urea
- Carbonates, carbamates and carboxylates

Syngas

- Fuels, hydrocarbons and alcohols
- Chemicals: Olefins, Styrene
- Renewable fuels and chemicals: CH₄, C₂H₄, CH₃OH, HCOOH
CO2 UTILIZATION AT UNITED

Video Placeholder – UNITED CO2 utilization
CONVERTING CO₂ WASTE INTO VALUABLE PRODUCTS, LEVERAGING AN INTEGRATED NETWORK FOR CO₂ DISTRIBUTION

Government of the United Arab Emirates - Decarbonization Program

CO₂ available: 6,000 KTA

Utilized (2015): 4,200 KTA

Opportunity: 1,800 KTA

Future opportunities

IBB
- Urea
- NH₃ PROCESS

IBN SINA
- MeOH
- Urea

ALBAYRONI
- 2-EH
- Urea
- NH₃ PROCESS

SAFCO 2,3&4
- Urea
- NH₃ PROCESS

SAFCO 5
- Urea

UNITED EG
- 500 KTA

Future opportunities

Food grade CO₂

Other EG plants
METHANOL PRODUCTION FROM CO2 AND H2

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>2700 MTPD</td>
</tr>
<tr>
<td>H₂ Required</td>
<td>400 MTPD</td>
</tr>
<tr>
<td>Methanol Production</td>
<td>~ 1800 MTPD</td>
</tr>
</tbody>
</table>

- CO₂ injection to lower stoichiometric number of the makeup gas during reforming at IBN SINA affiliate.
- Increasing energy efficiency of the plant by 7-8%
- Lower footprint additional Methanol production
CO2 REFORMING OF METHANE FOR SYNGAS PRODUCTION

Utilize waste CO2 to generate feedstock for high-value chemicals like Methanol to reduce methane use by adopting CO2 reforming instead of steam reforming

\[CO_2 + \text{CH}_4 = 2CO + \text{H}_2 \]

Technical challenges to overcome:
• Deactivation from catalyst sintering at high temperatures
• Deactivation from coke buildup
• Large energy requirements

Catalyst developments with thermally stable metal oxide support by tailoring crystal morphology and dispersing active metals in sub-Nano levels
CO2 SAVING POTENTIAL OF METHANOL

SABIC’S JOURNEY ON SUSTAINABILITY

SABIC’S APPROACH TO CO2 MITIGATION

CO2 SAVING POTENTIAL OF METHANOL

CHEMISTRY THAT MATTERS™
BENEFITS PROVIDED BY THE PETROCHEMICAL INDUSTRY

CO₂-eq Balance

EMISSIONS

SAVINGS

1 : 2.1

Source: ICCA 2009 study
METHANOL VALUE CHAIN

UPSTREAM PRODUCTION
- Natural Gas
- Coal
- ...

SABIC
- Methanol

DERIVATIVES
- Formaldehyde
- Acetic Acid
- MTBE
- MMA
- DME
- ...

END USER
- Construction
- Automotive
- Insulation
- PET bottles
- Pharma
- ...

END OF USE
- Landfill
- Incineration
- Recycling
AVOIDED EMISSIONS OF METHANOL APPLICATIONS

Rigid Foam insulation in construction MTBE, fuel additive

Currently methanol is already used extensively in net CO2 saving applications
Methanol is an environmental and financial answer for NOx and SOx legislations. Avoided Emission potential is high, but industry collaboration is needed to bring all benefits to the table and ensure no environmental trade-offs are made.

Source: http://www.walleniuslines.com/PageFiles/1472/Broschyr%20ZERO%20may%202010.pdf
DESIGN FOR SUSTAINABILITY EFFORTS AIM TOWARDS MORE EFFICIENT USE OF RESOURCES

- Alternative feedstocks
- Operational efficiency
- Recycle more
- Avoided CO₂ emissions through innovative solutions
CHEMISTRY THAT MATTERS™

- SABIC’S JOURNEY ON SUSTAINABILITY
- SABIC’S APPROACH TO CO2 MITIGATION
- CO2 SAVING POTENTIAL OF METHANOL
- CHEMISTRY THAT MATTERS™
COLLABORATION & EXTERNAL RECOGNITION

Industry collaboration:
- Automotive
- Water Management
- Aviation
- Mass Transportation
- Packaging
- Electrical and Lighting
- …

International Council of chemical Associations (ICCA)
- Avoided Emissions Case Studies

World Business Council for Sustainable Development (WBCSD)
- Global Guidance
- Product Avoided Emissions
- LCA Metrics
- Social standards

Plastics Europe
Member, Life Cycle Task Force (LCTF), Plastics Europe
We are on a journey in sustainability, utilizing and expanding the potential of our plants and of our products. Together with the right people we make chemistry that matters™.
CHEMISTRY THAT MATTERS™
LEGAL DISCLAIMER

The products and services of SABIC are sold and rendered subject to SABIC’s standard terms & conditions of sale (GTCS), which are available free of charge upon request, by post or digital. Standard terms & conditions other than the GTCS are dismissed and do not apply. Although any information or recommendation contained herein is given in good faith, SABIC makes no warranty or guarantee, express or implied, (i) that the results or specifications described herein will be obtained under end-use conditions, or (ii) as to the effectiveness or safety of any design incorporating SABIC’s products, services or recommendations.

This presentation or document does not contain any calculation, estimate or other warranty or representation that customers and third parties may rely on. Customers and third parties are responsible for making their own determination as to the suitability of SABIC’s products, services or recommendations for the customers’ particular intended use through appropriate end-use testing and analysis, and compliance with applicable laws and regulations.

Except as provided in SABIC’S GTCS, SABIC shall not be responsible for any loss or damage resulting from any use of its information, products or services described herein and SABIC assumes no liability whatsoever in this respects.

Nothing in any document or oral statement shall be deemed to alter or waive any provision of SABIC’s GTCS or this Disclaimer, unless it is specifically agreed to in a writing signed by SABIC.

No statement by SABIC concerning a possible use of any SABIC product, service or design is intended, or should be construed, to grant any license under any patent or other intellectual property right of SABIC or as a recommendation for the use of such product, service or design in a manner that infringes any patent or other intellectual property right.